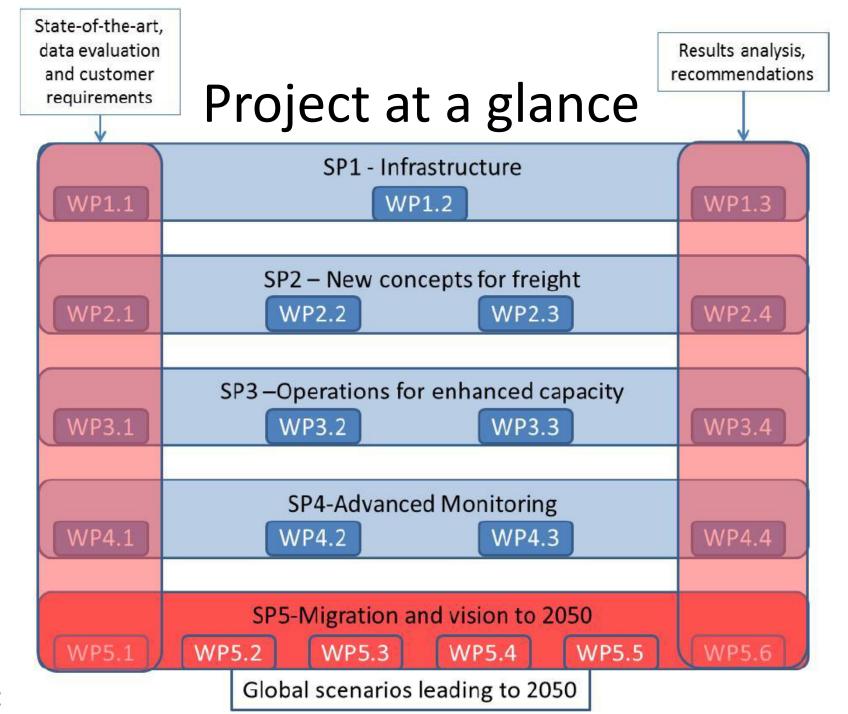


Capacity4Rail SP3 Sweden Borlänge, Sweden, 16th Oct 2014


Magnus Wahlborg, Trafikverket (TrV) Anders Peterson, Linköping University (LiU)

Modelling railway capacity

Capacity demand

Economic growth

Urbanization Trip generation

Socio-economic Trip distribution forecasting Modal split

Economic cycle

No. of cargo trains

Operating RUs Need for train slots

No. of passenger trains

Ad-hoc changes

Train cancellation

Operational changes

On-time performance

Driving

STRATEGIC LEVEL PLANNING

TACTICAL LEVEL PLANNING

OPERATIONAL LEVEL PLANNING

DAS

Capacity supply

Railway network

Junctions

Stations

Signalling systems

Planned Maintenance work

Train slots

Rolling stock

Major traffic disturbances Crew scheduling

Immediate maintenance work

Disruptions

Real time operations

GAP analysis Strategic aspects

- Harmonize the systems used for timetable planning and traffic simulation (European perspective).
- Small number of commercial systems are dominating, in-house developed systems decrease.
- Infrastructure Managers (IMs), Rail Undertakers (RUs) and System Suppliers need to co-operate about developments, methods and measures to improve processes.
- Lack of unified understanding of capacity definitions.

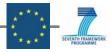
GAP analysis Tactical aspects 1 (2)

Integration and collaboration between IM and RU

- Better information about on-time performance, train paths, maintenance in timetable process
- Flexibility in the ad-hoc process and major disturbances
- Optimisation methods for how to use residual capacity (saturation problem)

Timetable optimization and on-time performance

- Rules and methods for prioritizing trains in planning and in operation
- Objective is to maximise customer satisfaction
- Knowledge and methods for sufficient on-time performance, robustness and time for maintenance work
- Unified criteria for timetable assessment and evaluation



GAP analysis Tactical aspects 2 (2)

Need of better tools for timetable planning:

- Existing tools without decision support and optimisation functions.
- Microscopic level tools to check conflict free timetables.
- Stochastic simulation of disturbances to ensure robustness and resilience.
- Tools to evaluate and analyse the on-time performance and to how the railway system adapts after a disturbance.
- Tools for handling and utilizing flexibility in the timetable,
 for example with regard to cancelled departures.
- There is a lack of commonly accessible data standards.

GAP analysis Operational aspects 1 (2)

Models for operational capacity typically deal with re-scheduling of trains, and possibly also other resources (crew and rolling stock).

They often rely on models for estimating delays, which is complicated in large-scale networks. Data collection is an important issue for this.

- Models for perturbation management often act on defined regions of limited size (e.g. a station area, a single line etc.).
- Data models and data exchange processes for the consideration of RU information in the traffic management need to be further developed.

GAP analysis Operational aspects 2 (2)

- Rules and objective functions for optimisation processes need to be further examined and harmonized with track access charging systems and delay penalties between railway undertakings and infrastructure managers.
- Data on real-time occupation of passenger trains should be used for dispatching decisions, especially when dealing with situations of heavy disruptions (large events).
- The migration strategy for optimisation of operation needs to be carefully defined.
- Models for short-term forecasts are important and are still not in use to the extent it could.
- Most models for conflict detection and resolution act are based on fixed –block signalling.

GAP analysis Driving Advisory Systems (DAS)

- Several mature DAS are today available on the market or in a prototype stage.
- Real-time connection to the train control to make the DAS have an important impact on the capacity utilization.
- Systems both optimize the energy and support the traffic flow.
- The challenge is to make connected DAS usable on more than specific lines; this includes both standardizing the communication and data formats.
- The ground systems (or train management system) should provide relevant traffic state data.
- A successful implementation relies on correct traffic forecasts; good short term prediction methods is a key component.

Conclusions research gaps

- 1. Improve processes and flexibility in timetable planning.
- 2. Improve methods for *traffic simulation analysis* and *evaluation* of on-time performance from historical data.
- 3. Develop standards and data management for system simulation.
- 4. Develop *decision support methods* for timetable planning and operational traffic controlling.
- 5. Develop automatized operational information systems and DAS.
- 6. Ensure a sound research environment with *open source code* and *open data*.

Next step for the Swedish team

- Short term forecasting
 - Uncertainty
 - Optimality
- Robust timetabling
 - Mixed traffic environment
 - Varying on-time performance and delay costs
- Railsys simulation
 - Verification
- Empirical data
 - Scenario Swedish Southern Mainline,
 Stockholm Malmö (–Copenhagen ... Palermo)
 - → capacity increase operation
 - → capacity increase tactical planning

Contact information

Magnus Wahlborg, MSc *Trafikverket* +46 (0)10 – 123 14 40 <u>Magnus.Wahlborg@trafikverket.se</u> Anders Peterson, PhD Linköping University +46 (0)11 – 36 31 07 Anders.Peterson@liu.se

