

FR8RAIL II OVERVIEW

Martin Joborn

February 2019

Research Institutes of Sweden **RISE SICS**

WP3 - Real-time network management and improved methods for timetable planning

- Trafikverket
 - RISE
 - KTH
 - Linköping University
 - VTI
 - Lund University
 - Blekinge Institute of Technology
- Tasks
 - T3.1: Demonstrator development for improved timetable planning
 - T3.2: Real time network management

T3.1 - Demonstrator development for improved timetable planning

- Builds upon ARCC, Fr8Hub, Impact-2, Plasa, ...
- Demonstrator (coordinated by RISE):
 - Demonstrator platform: Build upon RISE previous results for timetable optimization
 - Standardized input data handling
 - Optimization engine for timetable construction
 - Graphical timetables
 - Plug-in/extension 1 (LiU): Insert several trains in existing timetable
 - Plug-in/extension 2 (KTH): Timetable robustness analysis

T3.1 - Demonstrator development for improved timetable planning

- Research activites:
 - Why is operated timetable not equal to planned timetable? (from a *timetable planning perspective*)
 - Train insertion methods
 - Timetable robustness analysis methods
 - Short term handling of service windows
 - Analysis of delays, timetable slot precision and replanning of freight trains

T3.2: Real time network management

- Builds upon ARCC (+ Swedish projects Float, Blixten, ...)
- Research activities:
 - Why is operated timetable not equal to planned timetable? (from an *operational perspective*)
 - Train dispatching analyis
 - Marshalling yard operations analysis
 - Demonstrator specification

Fr8Rail II WP4 C-DAS

- C-DAS = Connected Driver Advisory System
 - Driver advisory system with real time traffic information/plan, connected with traffic control)
- Trafikverket / RISE contribution:
- Collect experience from Swedish C-DAS implementation (CATO on Malmbanan)
- Requirement spec on C-DAS from IM perspective:
 - Capture rail system improvement possibilities
 - Energy system optimization
 - Power regulation
 - Maximize capacity utilization (handle bottlenecks)
 - Improve system punctuality
 - Voltage regulation
 - Man-in-the-loop-requirements
 - Automation possibilities and requirements
 - Rail track ware and tear
 - Brake optimization

THANK YOU!

Presentatörens namn

E-mail

Telephone

Research Institutes of Sweden

DIVISION ENHET

