

ON-TIME

Optimal Networks for Train Integration Manage-

ment across Europe

Architecture specification and integration requirements

Grant Agreement N°: FP7 - SCP0 – GA – 2011 - 265647

Project Acronym: ON-TIME

Project Title: Optimal Networks for Train Integration Management across Europe

Funding scheme: Collaborative Project

Project start: 1 November 2011

Project duration: 3 Years

Work package no.: WP7

Deliverable no.: D7.2; Revision 4

Status/date of document: Final, 29/04/2013

Due date of document: 30/04/2013

Actual submission date: 29/04/2013

Lead contractor for this document: NTT Data

Project website: www.ontime-project.eu

Project co-funded by the European Commission within

the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants

(including the Commission Services)

RE Restricted to a group specified by the consortium

(including the Commission Services)

CO Confidential, only for members of the consortium

(including the Commission Services)

http://www.ontime-project.eu/

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 2 of 87

Revision control / involved partners

Following table gives an overview on elaboration and processed changes of the docu-

ment:

Revision Date Name /

Company

short name

Changes

1 06/02/2013 NTT DATA First Draft

2 18/03/2013 NTT DATA First release of a detailed event List with

roles and responsibility

Added WP5 Integration specification

Revised WP4 Specification

Revised TCS specification in order to han-

dle data management from the TCS itself

3 22/04/2013 NTT DATA Final Draft Revision for review

Revised:

 State of the Art

 Data Entities

 Event Model

 Integration Interfaces with WP3, 4,

5 and 6.

4 26/04/2013 NTT DATA Minor Reviews for submissions

Following project partners have been involved in the elaboration of this document:

Partner

No.

Company short name Involved experts

 NTT Matteo Anelli, Bruno Ambrogio, Daniele Carcasole

 TUD Thomas Albrecht

 UOB John Easton

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 3 of 87

Executive Summary

This document details the architectural and technical approach to the integration of

the ON-TIME distributed architecture.

Building on the data dictionary described in D7.1, this document will define and de-

scribe how modules will communicate each other within the ON-TIME architecture

and how the data flows are modelled in a real-time environment.

In section 2 and 3, general requirements of the architecture are given, and basic

principles used in it are described.

Extending the basic architecture principles, section 4 illustrate an analysis of some

available state-of-the-art systems, often used to implement what is described in sec-

tion 3.

Section 5 describes the architecture specifications, illustrating how it can be de-

ployed, and some example scenarios that includes other WP’s modules. It also gives

a component-based view of the architecture.

In section 6, the data and event models are explained. An extensive list of the events

generated by modules and by the platform is given, with publisher/subscriber and

role/responsibility descriptions.

Finally, section 7 defines the Integration Requirements, explaining how TCS’ and oth-

er WPs integrate with the WP7 architecture.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 4 of 87

Table of contents

EXECUTIVE SUMMARY .. 3

TABLE OF CONTENTS ... 4

TABLE OF FIGURES .. 6

1 INTRODUCTION ... 7

1.1 Terminology ... 7

2 GENERAL REQUIREMENTS .. 8

3 BASIC ARCHITECTURE PRINCIPLES .. 9

3.1 Distributed architecture ... 9

3.2 Publish-Subscribe communication pattern ... 10

3.3 REST Web Services .. 12

3.4 Document-based DBMS .. 13

4 STATE-OF-THE-ART ANALYSIS ... 15

4.1 Queue Messaging Systems .. 15

4.1.1 Description of the AMQP Protocol ... 16

4.2 REST vs. SOAP Web Services .. 18

4.3 Document-based Database Management Systems 18

5 ARCHITECTURE SPECIFICATIONS ... 21

5.1 Possible architecture scenarios .. 25

5.2 Component-based view of the architecture .. 26

6 DATA AND EVENT MODEL .. 27

6.1 Published Data Entities ... 27

6.2 Event Model .. 29

6.2.1 ConnectionConflictEvent ... 31

6.2.2 ConnectionScheduleAvailableEvent .. 32

6.2.3 CrewConflictEvent .. 33

6.2.4 CrewScheduleAvailableEvent ... 34

6.2.5 LineDisruptionEvent ... 35

6.2.6 LockedSwitchDirectionEvent .. 36

6.2.7 PlatformDisruptionEvent ... 37

6.2.8 RealTimeTrafficPlanAvailableEvent ... 38

6.2.9 RollingStockChangeEvent ... 38

6.2.10 RollingStockConflictEvent ... 39

6.2.11 RollingStockDisruptionEvent .. 40

6.2.12 RollingStockScheduleAvailableEvent ... 41

6.2.13 SetRouteEvent .. 42

6.2.14 SignalStateChangeEvent ... 43

6.2.15 StationDisruptionEvent ... 44

6.2.16 SwitchDisruptionEvent.. 45

6.2.17 TDSectionOccupationEvent ... 46

6.2.18 TDSectionReleaseEvent .. 47

6.2.19 TemporarySpeedRestrictionsEvent ... 48

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 5 of 87

6.2.20 TrackDisruptionEvent ... 49

6.2.21 TrainEnterEvent ... 50

6.2.22 TrainExitEvent ... 51

6.2.23 TrainMassChangeEvent ... 52

6.2.24 TrainPassengerCountChangeEvent ... 53

6.2.25 TrainPathEnvelopeAvailableEvent ... 54

6.2.26 TrainPositionChangeEvent ... 55

6.2.27 TrainSpeedChangeEvent ... 56

6.2.28 TrainSuppressedEvent .. 57

6.2.29 UpdateConnectionScheduleEvent ... 58

6.2.30 UpdateCrewScheduleEvent ... 59

6.2.31 UpdateRollingStockScheduleEvent ... 60

6.2.32 UpdateRealTimeTrafficPlanEvent .. 61

6.2.33 UpdateTrainPathEnvelopeEvent ... 62

7 INTEGRATION REQUIREMENTS ... 63

7.1 Integration Interfaces ... 63

7.1.1 External Integration Interfaces .. 64

7.1.2 EventConsumer Interface ... 67

7.1.3 DataProvider Interface ... 68

7.1.4 Routing Interface ... 71

7.2 Integration with TCS .. 75

7.2.1 Integration with WP3 Modules ... 77

7.3 Integration with WP4 Modules ... 78

7.3.1 TrainPathEnvelopeComputation module (TPEC) 79

7.4 Integration with WP5 Modules ... 80

7.5 Integration with WP6 Modules ... 83

8 REFERENCES .. 86

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 6 of 87

Table of figures

Figure 1 - General architecture scenario .. 21

Figure 2 - Replicated AMQP Queues .. 22

Figure 3 - Distributed Event Processors ... 23

Figure 4 - MongoDB distributed environment ... 23

Figure 5 - Example scenario with distributed modules ... 25

Figure 6 - Component-based view of the architecture .. 26

Figure 7 - Data Entities as they are published by the DataProvider Service 27

Figure 8 - Events dispatched and consumed by the EventProcessor Interface 29

Figure 9 - WP4 Integration Flow ... 78

Figure 10 - WP5 Integration Flow ... 80

Figure 11 - WP6 Integration Flow ... 84

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 7 of 87

1 INTRODUCTION

1.1 Terminology

TCS Traffic Control System: a collection of systems that does monitor and

manage the traffic system.

ICT Information and Communications Technology

ONT ONTIME project code on the project document repository

W3C World Wide Web Consortium

WPx Short code for a work package (e.g. WP7 refers to work package 7)

XML eXtensible Mark-up Language

XSD XML Schema Document

REST Representational State Transfer

HTTP Hypertext Transfer Protocol

HTTPS HTTP Secure

MoM Message Oriented Middleware

API Application Programming Interface

URI Uniform Resource Identifier

JSON JavaScript Object Notation

BSON Binary JSON

DBMS Database Management System

RDBMS Relational DBMS

NoSQL Category of non-relational DBMS

FIFO First-In-First-Out

LAN Local Area Network

WAN Wide Area Network

TCP Transfer Control Protocol

SSL Secure Socket Layer

SOAP Simple Object Access Protocol

AJAX Asynchronous JavaScript And XML

SOA Service Oriented Architecture

UML Unified Modelling Language

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 8 of 87

2 GENERAL REQUIREMENTS

The rise of distributed systems and protocols paved the way to scale and architect

very complex information systems. Railway management systems are very good

candidates to use a distributed architecture, because of their natural geographical

distribution and the need to be interconnected with bounding foreign systems to ex-

change data and operational information.

The ON-TIME Project proposes a distributed architecture to integrate different algo-

rithms to solve typical problems of Railway Management Systems, such as timeta-

bling, microscopic and macroscopic dynamic planning, resource management and

scheduling. Since would be unfeasible to create a system capable of substituting cur-

rent Train Management Systems, the purpose of the ON-TIME Architecture is to com-

plement Train Control Systems extending their functionalities with a new layer of algo-

rithms and real-time solutions to cope with the usually static planning of Train Control

Systems.

They key-purpose of the architecture definition is to define a distributed, configurable

and flexible infrastructure to exchange data and messages between different modules.

The advantage of using a distributed architecture in this context is the ability to collect

and exchange data on systems that are by their own nature loosely coupled (like

timetabling management software and crew management software, for example) and

create a coherent, dynamic communication context in which these information can be

exchanged.

Data definition and software standards are equally important as the architecture itself.

Data and technical standards must be implemented in order to easily integrate a

collection of systems and to represent data in a way such that regional differences be-

tween neighbouring systems will have a small impact on the communication semantic.

Since most of the European Countries have different processes and data standards, a

common data representation is needed. In terms of data representation, as de-

scribed also in D7.1, open standards must be used to encourage the adoption of the

platform and to implement a uniform data representation that will supersede specific

regional requirements.

Another key aspect is to treat modules as services that can be queried and interacted

by other systems and users. This is a very important aspect of distributed systems:

each functional module should be black-boxed and self-sufficient, to be easily replaced

by another implementation using the same modular framework.

Since for real-time operational systems is paramount to have data consistency and to

avoid synchronization issues, seeing systems as services opens the possibility to ab-

stract their data as services as well.

Furthermore, in order to facilitate the integration with legacy and brand-new sys-

tems, the architecture must use open communication standards and integration

frameworks suitable for scaling from small-scale up to large-scale distributed systems

without compromising performance.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 9 of 87

3 BASIC ARCHITECTURE PRINCIPLES

The architecture used in the ON-TIME Project must aim to be a modular, service-

based and distributed computing architecture facilitating the integration of diverse ICT

systems and exposing a range of algorithms via standard communication interfaces.

The basic architecture principles of the platform are:

 Modularity. Every module of the architecture is an abstract black box that de-

fines a single functional unit. Modules that need information in real time con-

sume events generated by the platform and by external sources, such as sen-

sors or traffic control systems. Module abstraction allows easy substitution of

differing implementations of similar functional units.

 Event-Based. Communication between different modules is managed by the ex-

change of events between the single modules and the architecture, removing

any dependencies between the implemented functional units within a workflow.

 Distributed. State of the art application protocols will be employed to ensure

that the platform can operate in distributed environments or in an independent,

monolithic configuration.

 Extensible. XML representations will be used for events and data entities reduc-

ing the risk on dependencies on the choice of particular programing languages.

Non-real-time data (for example infrastructure data and the current timetable) will be

provided via an on-demand, read-only public interface allowing it to be accessed as

required by any system in the platform without the risk of data becoming corrupted.

3.1 Distributed architecture

Dealing with real-time and near real-time systems, where several entities are in-

volved, each one either producing or consuming data, is naturally achieved by means

of a distributed environment. This means that those several entities could be located

not only on different systems, but also in different geographical areas.

Of course, such kind of an environment requires that the different systems must

communicate each other in order to coordinate the management of computation tasks,

increasing the complexity of its construction and setup. On the other hand, several

advantages can be listed:

 Fault-tolerance. Replicating the main roles of the architecture among different

systems makes easy to avoid stops of the architecture after a failure (either

hardware or software one). In this way the availability of the system is in-

creased, while the overhead of maintaining consistency among replicas should

be taken into account when, for example, they stores data.

 Scalability. When the number of users or messages increases, the load of the

entire architecture increases. This leads to higher latencies and possible mes-

sage losses, not always admitted by applications. A distributed environment is

more suitable for dealing with this increase of load, by means of, for example,

adding a new node to the architecture and route some requests to it.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 10 of 87

 Performance. Having more replicas allows load distribution among them, even-

tually reducing the service time for a single request, since the workload is gen-

erally maintained as balanced as possible among all nodes.

Furthermore, from a user point of view, a distributed architecture allows clients to in-

tegrate their modules with the whole system, while keeping them at their premises,

and hence maintaining the full control on them.

3.2 Publish-Subscribe communication pattern

The well-known point-to-point communication pattern is not suitable for use in loose-

ly-coupled architectures where several modules must communicate each other asyn-

chronously, without having detailed information on network topology. In this type of

architecture, multiple modules commonly require access to information generated by a

single sender (multicast communications) and the run-time state of a process may

change the message types it needs to complete its assigned task.

In these scenarios, where scalability and flexibility are of paramount importance, the

communications management between modules should be left to a message-oriented

middleware (MoM) employing a Publish-Subscribe pattern. In this pattern, messages

(characterized by topic) are sent by message publishers to the middleware layer. Sub-

scribers receive from the middleware only message types that they previously sub-

scribed to. Subscriptions can be added and removed at any time.

Figure 1 Communication Pattern

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 11 of 87

Figure 2 - Dynamic Subscriptions

Once a publisher sends a message to the platform, it must route it to all the right sub-

scribers. Different approaches are possible:

 Topic-based routing. Subscriptions are issued expressing the topic of interest,

i.e. the type of message, no matter what the message content will be. Message

data can be unstructured.

 Content-based routing. Subscriptions are issued by imposing conditions on

the content / values of the message. In this case, data contained within mes-

sages must be structured. Content-based routing requires an analysis of the

content of each message; this is usually implemented by means of CEP (Com-

plex Event Processing) systems, which typically offer not only content analysis

but also content aggregation and filtering. This additional functionality can be

useful in scenarios where large streams of events are present in the system but

imposes an additional processing load on the system.

It is also common, for the communication middleware, to manage the following addi-

tional quality-control aspects of message passing within the system:

 Reliability. Once a message is sent to the architecture, eventually all the inter-

ested subscribers will deliver it. The middleware ensures that no message is

duplicated, and no spurious message is created.

 Durability. The communication infrastructure could manage the dispatch of

messages either in a durable, or non-durable way. The difference between

them is evident when a crash of the communication system occurs. With the

former, a message sent before the crash is still delivered to the subscribers

once the communication system has been recovered.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 12 of 87

3.3 REST Web Services

Short for Representational State Transfer, REST is an architectural style for developing

web services. Since it relies on the HTTP protocol, it became the de-facto standard for

web APIs architecture designs also for the simplicity of its usage and integration.

The HTTP protocol also implies that in REST architectures we have clients and servers.

Like a classic request for a web page, clients initiate requests to servers that process

them and return the appropriate responses. The main entity involved in REST requests

is the representation of a resource that is an abstract document that may be ad-

dressed. Typically, data exchanged within requests is represented using the JSON

format, that provides a compact representation, but every other hypertext valid media

type can be used, such as XML.

In a general web API architecture using REST, implementing the so-called RESTful

APIs, every resource (or collection of resources) is referenced by an URI and accessed

by means of standard HTTP request types, maintaining their semantics:

 GET. Perhaps the most important one, used in the web context for downloading

web pages. In the REST context, it is used to retrieve and list resources or,

more precisely, a representation of them, for example JSON or XML data.

 POST. Along with GET, it is the other widely used request type, in the web con-

text, for example whenever the user is compiling a form and sending its data to

the server. In the REST context, a POST request to a specific resource URI it is

used to replace that resource with a new one or, in case the resource is a col-

lection of items, to create a new instance of that resource and add it to the col-

lection.

These two request types are the most widely supported by web browsers, and hence

the most well-known ones. However, HTTP specifications include also other request

types, useful in a RESTful API context:

 PUT. Very similar to POST, it is used to replace the resource addressed by a

specific URI with the one passed by parameter. This is true both for collections

of resources and single-item resources. For this reason, POST is not generally

used is case of single-item resources, since PUT better fits the semantic of the

operation.

 DELETE. As the name implies, it is used to delete a resource addressed by a

specific URI, regardless of its multiplicity.

 HEAD. Pretty similar to GET, but it does not retrieve the entire representation of

the resource, but only the HTTP header with all the information included in it,

such as the timestamp of the last modification of that resource or its content

length. This kind of requests may be used by clients to implement features like

caching and to avoid downloading the same resource representation twice.

GET and HEAD are defined as safe, since they do not make side-effects on data, but

simply retrieve it. They are also defined as idempotent, since their multiple invocation

give the same end result. DELETE and PUT are clearly not safe, since they change the

state of one or more resources on the server. DELETE is also idempotent, since every

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 13 of 87

resource can be deleted at most once, and so is PUT, since after doing several times

the same request, the server ends up with the same state that would be obtained with

only one of them. POST is not definitively associated with these definitions: it depends

on what it is used for.

Parameters to REST requests can be basically passed in two ways: appending them to

the URI or writing them in the body of the request. The parameters passed by means

of the former method are usually called GET parameters, while the ones passed by

means of the latter are usually named POST parameters. The reason is simply because

the former is the natural method to use for the GET request type, while the latter for

the POST one. However, this association is not mandatory.

The lack of mandatory requirements for RESTful APIs is due to the fact that REST is an

architectural style rather than a standard. A REST architecture is a combination of

standards.

3.4 Document-based DBMS

Document-based databases are part of the NoSQL family of database management

systems. The main concept behind them is to store data representing it as documents

rather than records, typically represented in formats such as JSON, XML and BSON.

From an abstract point of view, a document and a collection, in a document-based da-

tabase refers to a record and a table in a relational database, respectively. The main

difference is in the flexibility of their structure. In a RDBMS, the schema of the data

is rigid, defined at design time of the database, giving to each record a precise type

(columns name and type), implied by its own table. Hence, all records within a table

have the same structure.

On the other hand, in a document-based database, two documents of the same logical

type, i.e. belonging to the same collection, may have slightly different data stored in,

as shown in the following example:

Train1 = {number: 1234, type: “cargo”, mass: 1500}

Train2 = {number: 4321, type: “passenger”,

commercialStops: [

{name: “station1”, arrival: 16.00.00, departure: 16.02.00},

{name: “station2”, arrival: 17.00.00, departure: 17.02.00}

]}

where a “cargo” train has not commercial stops, while “passenger” ones have.

This kind of flexibility clearly gives the advantage of reducing the sparseness of data:

in relational databases, whenever different records in a single table may store differ-

ent sets of columns, two methodologies are generally used: the structure of the table

holds all the columns, records that store values only for a subset of them have a null-

value for the remaining columns; acting the so-called decomposition of the schema,

creating additional tables in order to minimize the presence of null-values. The latter

method is generally preferred, because managing null-values is tricky and some prob-

lems could arise. In general, null-values waste storage space. Moreover, a column

with null-values cannot be primary key and, last but not the least, there could be

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 14 of 87

problems in applying SQL aggregation functions on them, such as AVG, SUM and

COUNT.

However, as the number of tables increases, the number of joins increases, when the

database is queried for retrieving data. Joins are considered heavy operations, as they

increase the time complexity of queries. Moreover, query execution times in rela-

tional databases increase with the number of records stored in tables. This can be of-

ten slightly mitigated with the use of indexes, but the effort to maintain them con-

sistent with data in related tables must be taken into account.

Document-based databases usually refer to joins as references between documents.

References are different from relational joins, since they can be evaluated only if

needed. Joins, on the other hand, are calculated on the entire set of records, and fil-

tering is done afterwards.

Another aspect to consider is that relational databases ship with the famous ACID

properties for transactions, which ensure some guarantees on data:

 Atomicity. The execution of a transaction is seen by the user as an atomic op-

eration: either all actions are carried out or none are.

 Consistency. Each transaction, executed alone on the database, must preserve

the consistency of the data. The DBMS assumes that consistency holds for each

transaction.

 Isolation. Transactions must be isolated from the effects of other concurrently

executing transactions. In other words, each transaction must see the system

as if there are no other running transactions, i.e., there is no interleaving.

 Durability. Once the DBMS confirms that a transaction has been successfully

completed, its effects must be permanent on the database, even if some crash

occurs.

These properties give a powerful abstraction for developers, which do not have to

cope with concurrency issues in their code. However, ensuring them is heavy, espe-

cially for consistency, when there is the need for scalability and availability. ACID

properties indeed imply that any read subsequent to a write on a same resource must

return the version written by this latter.

Scalability is generally achieved, along with availability, by replication and sharding (or

partitioning). At the end, the database system consists of several nodes, with data

spread and replicated among them. This give fault-resilience (hence availability) and

load balancing capabilities, as read operations can be done on any replicas. The prob-

lem in this is to maintain the consistency on these operations: ensure that a read re-

turns always the last value written. This is the so-called write-consistency, and its im-

plementation in a distributed environment hits the performances, since all read opera-

tions should be delayed till the last value written is propagated among all replicas.

Although it would be a desirable property, it is not needed by all datasets. Most of

them can work well even if only eventual-consistency is ensured, that means that a

read operation will return the last written value only since a point in time. Simply

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 15 of 87

speaking, this allows the propagation of a write to replicas to be done asynchronously,

preserving performances.

Generally, document-based database systems only ensure eventual-consistency, since

they are designed for distributed environments, like cloud computing applications.

4 STATE-OF-THE-ART ANALYSIS

In this section, we will illustrate a state-of-the-art analysis on software products im-

plementing the technologies introduced ahead.

4.1 Queue Messaging Systems

 RabbitMQ. It is an open source Enterprise Messaging Queue server from

VMWare, written in the Erlang language. Since it is one of the main implemen-

tations of the AMQP protocol (Advanced Messaging Queue Protocol), its archi-

tecture is broker-based, so every message is delivered to a central entity (Ex-

change) that routes it to the correct queue.

RabbitMQ nodes can be organized in clusters, in order to achieve scalability and

availability. Queues can be replicated (mirrored) in an active/passive fashion,

with one master node and at least one slave node: if the master fails, a new

one is elected among all slaves and the system continues to operate. RabbitMQ

built-in clustering is not partition tolerant (since it ensures strong consistency

and availability), so its usage is preferable on LAN environments, where con-

nectivity between nodes can be considered stable. On WAN environments,

RabbitMQ brokers can be distributed on different nodes by using the concepts

of federation and shovel, that basically allows a broker to receive messages

published to another broker, connected by the AMQP protocol. Of course, bro-

kers can still be clustered locally. In these scenarios, partition tolerance and

availability are achieved and, hence, only the eventual consistency can be

globally guaranteed.

Queues could be made durable, so that the containing messages are persisted

on disk even in case of failures, on the Mnesia DBMS, written in Erlang as well.

RabbitMQ runs on all major operation systems and clients for it could be written

using several programming languages, such as Java, .NET, Ruby, Python, Er-

lang, PHP and C/C++. In addition, its setup is fast and easy.

 Apache QPid. Part of the Apache Software Foundation, it is an open source En-

terprise Messaging system. Like RabbitMQ, it implements the AMQP protocol,

so its architecture is broker-based. It provides brokers written in C++ and Java

languages, with different features.

Java Brokers

Further to standard FIFO queues, also these kind of queues are supported:

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 16 of 87

o Priority-Queues: messages are delivered in the order based on their pri-

ority,

o Sorted-Queues: messages are delivered in the order based on the value

of some message property,

o Last-Value-Queues: if two messages with the same key arrive, only the

newer is kept, and thus read by clients.

Only two-node clusters are supported, where a node is the master and the oth-

er one is a replica. Every operation is performed by clients on the master node

that propagates its state to the replica node. Availability of the system is pre-

served, in case of failures of a single node at once. QPid clustering copes with

network partitions, in case of replica being disconnected from the master due

to a failure of their network link, however there are some limitations. QPid in-

deed makes use of a failure detector system that is responsible for detecting

node and network links failures. Working on a WAN environment, where laten-

cies of message delivery and stability of connectivity is fairly low, the failure

detector could give some false positives. This means that, if the master is erro-

neously considered faulty, the replica node becomes master as well, ending up

with a cluster with two masters at the same time, i.e. a split-brain situation.

QPid does not provide an automatic way to recover from such a situation.

Queues in QPid can be made durable, and their persistence can be configured

to be carried on different DBMSs, such as MySQL, Oracle BDB JE and Derby.

C++ Brokers

This kind of broker is much more sophisticated than the Java counterpart. It

supports FIFO and LVQ queues, and also active/active messaging clusters,

where all nodes have the same queues, exchanges, messages and bindings. A

consistent view of the system state is maintained across nodes in the cluster,

so every node is actually able to process client requests. Thus, strong con-

sistency and availability are preserved, hence clusters are not network partition

tolerant.

Brokers can be connected across WANs by means of federations, generally

used among clusters configured in high-availability.

QPid runs on all major operating systems and clients could be written using Ja-

va, Python, C++, .NET and Ruby programming languages.

4.1.1 Description of the AMQP Protocol

The AMQP Protocol is a networking protocol used in middleware applications to imple-

ment message-passing brokers between publishers and subscribers, in a distributed

environment.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 17 of 87

The main actors involved in the protocol are Exchanges and Queues. Publishers send

messages to an exchange that will route them to the appropriate queues that have

previously bound to it. Subscribers consume messages directly from queues.

Figure 3 - AMQP example scenario

In figure above, messages arriving at the exchange are pushed into Queue 1 and

Queue 2 based on some routing criteria defined on the exchange:

 Direct. Routing is based on the equality a key-string defined on messages.

 Fan-out. Messages are broadcasted to all queues, regardless any routing key.

 Topic. Similarly to direct, routing is based on the matching of a specific pattern

on the routing key.

 Headers. Routing is based on multiple attributes defined as message headers.

Moreover, an exchange can be durable so that it will survive to a broker restart, or

transient. They can also be configured to be deleted automatically by the system

whenever all queues have finished using it.

Queues store messages that are consumed by applications. They have a name and

some additional properties. As well as exchanges, they can be durable or transient and

can be configured to be deleted when there are no active subscribers anymore. Fur-

thermore, they can be created as exclusive queues, so that they can be used by only

one connection and hence the queue will be deleted when this connection closes.

Exchanges and queues must be declared to the broker by issuing appropriate AMQP

commands. After declaration, queues are bound to the exchanges that will use them,

by issuing binding AMQP commands.

Reliable delivery could be implemented using an acknowledgment-based mechanism,

where the broker is instructed to remove messages from queues only after the client

sends back an acknowledgment. Multiple message acknowledgment can be imple-

mented as well.

In case a client has successfully received a message, but it’s not able to process it at

that time, it can reject the message, by issuing a negative acknowledgment. However,

a reject message cannot be issued for a set of messages. This is left to specific proto-

col implementations.

Connections with brokers are opened on top of TCP for reliable communications. Op-

tionally, they can be secured using SSL. From the user point of view, a connection

with a broker is a channel that is an abstraction of the real network connection. The

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 18 of 87

use of virtual channels instead of real TCP connections makes possible to have differ-

ent logical connections on top of a single real one, letting clients to have multiple con-

nections with brokers while using system resources for a single one.

Furthermore, brokers can host different logical environments, each one with its

queues and exchanges, by using the concept of virtual hosts, very similar to the ones

used by web servers.

4.2 REST vs. SOAP Web Services

REST and SOAP are two approaches for creating web services, each of having its ad-

vantages and disadvantages.

The main difference between them is that SOAP is a W3C standard, while REST is ra-

ther a collection of standards used together.

First of all, the access to REST web services is done by using standard URIs on

HTTP/HTTPS, hence a web service call can be performed using any web-browser. On

the other hand, making a SOAP call is not that easy, while it gives the possibility to

use any transport protocol other than HTTP.

For data representation, SOAP relies on XML for messages representation, including

their payloads. REST is more flexible in this sense, since it is not strictly associated

with any representation language, although JSON is generally used. XML has the clear

disadvantage to add overhead to information, while JSON does not. On the other

hand, XML allows to have rigid specifications for exchanged types.

The use of formal contracts on data leads to reduce the maintainability of code, since

whenever the contract changes, clients have to be reconfigured in order to be able to

re-issue invocations.

REST communications can be secured by using HTTPS instead of HTTP. More security

and encryption options are possible with SOAP.

The common scenario for REST employment is when totally stateless operations are

needed, and caching facilities could be desirable. Of course, it use less bandwidth than

SOAP and makes very easy the integration with commonly used web technologies, like

AJAX. SOAP, on the other hand, offers the possibility to implement stateful operations

with formal contracts on data structures on both sides of the communication. Moreo-

ver, SOAP allows the processing code to be executed asynchronously from the service

invocation.

4.3 Document-based Database Management Systems

 MongoDB. It is the leading of document-based NoSQL database management

systems, open source and written in C++. It is used by several applications,

from content management, such as SAP, SourceForge and Wordnik, to news

and media websites, such as TheGuardian, Forbes and The New York Times.

It stores documents using a JSON-like format, offering dynamic schemas, as

the type of DBMS can provide, and a full support for indexes, as they can be

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 19 of 87

created on any attribute of documents. Several indexes are available: single-

key or multi-key, sparse or dense, hash-based or tree-based.

MongoDB supports transactional operations only on a single document. This

means that any operation performed on a single document can be considered

atomic. Concurrency control is performed by a readers-writer locks mechanism.

Operations that involve different documents cannot be executed atomically with

an out-of-the-box functionality. However, a two-phase commit approach could

be implemented by the user to achieve transaction-like semantics.

Large aggregation tasks can be executed used a built-in map-reduce program-

ming paradigm.

MongoDB is well suitable for applications that run on distributed systems,

where there is the need for scalability as well as fault-tolerance. The concepts

of replication and sharding are used. With the former, a single MongoDB node

(called primary) is replicated on a number of other nodes (called secondary).

Writes are all directed to the primary, while reads can be executed on any node

within the replica set. The state of the primary node is reflected to the second-

ary ones asynchronously. MongoDB can be configured both to allow read op-

erations only on the primary node, and to allow them on any node of the repli-

ca set. In the former case, strict-consistency is achieved, while in the latter on-

ly the eventual-consistency can be ensured.

Sharding refers to data partitioning as a way to achieve scalability, balancing

data and load among different machines. With this methodology, a document

collection is divided into shards, each one stored on a different machine. Write

capacity can be increased, since different write operations can be executed on

different machines at the same time.

Replication and sharding are generally used together to achieve high-

availability (fault-tolerance) and scalability. A common approach is to shard

collections of documents across a set of machines, and then replicate each of

them. We achieve thus availability of the overall system. Machines are not con-

strained to be placed in the same data centre, since mirroring and sharding are

possible also across WANs, preserving partition-tolerance. Split-brain situations

are avoided by the implementation of a pessimistic approach: whenever a net-

work partition is detected, only one partition remains available and continues to

operate accepting read and write operations, while the others become unavail-

able. The survival partition is chosen carrying out a quorum-based consensus.

MongoDB has a very good documentation, and it can be used easily with al-

most any programming language using its drivers.

 CouchDB. Part of the Apache Software Foundation, is an open source docu-

ment-based database management system, written in the Erlang language.

Documents are represented in a JSON-like format and read and update opera-

tions on them can be issued by means of a RESTful HTTP API.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 20 of 87

CouchDB is based on a Multi-Version Concurrency Control model, where read

operations are never blocked and a new version of a database object is created

every time that object is written.

Database replication is possible by means of a special DB, called “replicator”,

which manages the replication of objects between two databases. Anyway, rep-

lication is intended to be used only for server clustering, in order to achieve

some form of scalability on read operations.

At the moment, CouchDB is not well suited for distributed applications, since it

does not support sharding and partition-tolerance.

Clients for CouchDB are available in several programming languages.

 RavenDB. A document-based database management system, open source, writ-

ten on the .NET framework.

It supports ACID transactions both on single and multiple documents opera-

tions. Scalability and Availability are achieved by the support of replication and

sharding.

The map/reduce programming technique can be used for complex aggregation

tasks on data.

Data is accessed by a RESTful HTTP API, and clients are available for .NET, giv-

ing the possibility to run LINQ queries on a database. Furthermore, it can be

embedded easily in any .NET application.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 21 of 87

5 ARCHITECTURE SPECIFICATIONS

The architecture will allow Traffic Control Systems to be integrated with Optimization

Modules and Driver Advisory Systems.

A Traffic Control System could consist of several server units, each one belonging to

different functional areas, such as commercial, traffic management, data storage and

analysis. Generally, a TCS could be seen as a distributed environment, where different

functional units can reside in different geographic areas. Furthermore, a TCS collects

real-time data from trains on the field, by different possible communication media.

Driver Advisory Systems communicate with TCS and sends data to running trains, ei-

ther directly or indirectly, passing through the TCS.

Optimizations Modules integrate within the architecture by means of the SOA architec-

ture given by WP7.

Traffic Control System WP7 Architecture

EventProcessor

SubscriptionService

DataProvider

Optimization ModulesDriver Advisory Systems

Figure 1 - General architecture scenario

As showed in the figure above the implementation of the WP7 architecture it is com-

posed by three different nodes:

 Subscription Service Node

This service will be provided by a custom Web Service written in .NET. The We

Service model will guarantee the opportunity for other actors to call the service

regardless of the technology used to implement them.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 22 of 87

Before be able to process events, actors must register to the Subscription Ser-

vice, indicating whether they are going to send or receive events from the archi-

tecture.

The service can accept or reject the requests basing on several criteria: formal

correctness of the request, security policies and so on.

The DataProvider module will store subscriptions and un-subscriptions.

 Event Processor Node

This layer will be responsible for receiving event messages from publishers and

delivering them to subscribers, in a reliable way.

RabbitMQ will be used to implement the MoM (Message Oriented Middleware) us-

ing reliable and durable message queues.

Reliability is achieved by using RabbitMQ built-in clustering on LAN environ-

ments, hence replicating message queues on different nodes.

Cluster of Message Brokers (Replication)

Figure 2 - Replicated AMQP Queues

If the system load requires the WP7 MoM to scale up, more clusters of message

brokers can be added to the scenario, connecting them through a WAN network,

hence on different geographic areas.

Using federated message brokers, we safely avoid the occurrence of split-brain

situations.

Different subscriber clients can access the WP7 MoM through any Event Proces-

sor in the network, achieving thus load balancing.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 23 of 87

Federated AMQP Message Brokers

EventProcessor

EventProcessor

EventProcessor

EventProcessor

Internet

Figure 3 - Distributed Event Processors

 Data Provider Node

The DataProvider node will be implemented using the MongoDB database man-

agement system. Both stand-alone and distributed solutions are possible.

MongoDB Replica-Set MongoDB Replica-Set

MongoDB Primary Replica-SetClient Client

Client Client

Internet

Figure 4 - MongoDB distributed environment

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 24 of 87

Similarly to concepts used in the EventProcessor node specifications, reliability in

the DataProvider node is achieved using the MongoDB replication scheme.

In this way, different clusters of MongoDB node are connected each other using

a WAN network, achieving hence scalability.

In order to let the system work in presence of network partitions and failures,

one out of all MongoDB clusters (replica sets) must contains more nodes than

others, in order to maintain a majority within it. In this way, MongoDB internal

quorum-based algorithms can work safely on a WAN environment.

The Data Provider node will contain all subscription data, updated by the Sub-

scription Service. The Event Processor will use those data to dispatch messages

to correct recipients. Furthermore, it will contain the event catalogue, i.e. the list

of possible events managed by the WP7 infrastructure.

Train-related data will be not stored by the Data Provider node; accesses to

those information are redirected to the TCS. The architecture will act as a proxy

for such data requests, abstracting hence an interface to the TCS.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 25 of 87

5.1 Possible architecture scenarios

WP7 Functional Block

EventProcessor DataProvider

Internet

WP7 Functional Block

EventProcessor DataProvider

WP7 Functional Block

EventProcessor DataProvider

WP5 Module
Node

WP3 Module
Node

WP4 Module
Node

WP4 Module
Node

WP4 Module
Node

WP5 Module
Node

Figure 5 - Example scenario with distributed modules

From their side, optimization modules could be distributed as well, meaning that a

single module could consist of several computational units that have different roles,

even spread on different geographic areas.

Note that different nodes of a single module can communicate each other by means of

the WP7 architecture, using appropriate event definitions and subscriptions.

This scenario is feasible within the WP7 architecture, achieving a fully-distributed

system.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 26 of 87

5.2 Component-based view of the architecture

Figure 6 - Component-based view of the architecture

 EventProcessor: it will communicate with the TCS and WPs. During the dis-

patch of messages, it uses the SubscriptionService to access subscription data,

and the DataProvider component to access data storage.

 DataProvider: provides a read-only data access to published data structures,

updates to these structures are performed by special events generated by the

optimisation modules concerned.

 SubscriptionService: manages the list of subscribers to specific event types

within the architecture. The component will also provide the infrastructure to

define routing rules (determine the services to which an event has to be for-

warded). The component will store:

o A list of event consumers. Every consumer registers specifying a list of

events (defined by TypeId and Version number) it is subscribing to;

o A list of event publishers. Every publisher will specify a list of events

(again defined by TypeId and Version number) that is going to provide.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 27 of 87

6 DATA AND EVENT MODEL

6.1 Published Data Entities

Figure 7 - Data Entities as they are published by the DataProvider Service

Since most of the data entities provided within the architecture are subject to updates

in response to changes in the real-world state of the network, or the completion of

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 28 of 87

processing tasks by optimisation modules, the architecture will provide a way for

modules to consume these data structures on-demand. To this end, the architecture

will maintain an interface to a directory of latest versions / last valid releases of all

published data entities. Updates will be performed via messages from data publishers.

This approach will be of greatest importance for data entities that need to be periodi-

cally updated during a session (e.g., timetables).

The system will be based on published dates: whenever an optimization module will

provide a new version of a data structure, the architecture will store it and will publish

it for consumption by other services.

These data interface are read-only, scenario-based data access modules and will not

be updatable from the DataProvider itself.

To update scenario data structures, the architecture need to receive an update event

from the subscribers allowed to submit it.

For details about the ON-TIME data model, please refer to D7.1 - Library of Data and

Communication Models.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 29 of 87

6.2 Event Model

Figure 8 - Events dispatched and consumed by the EventProcessor Interface

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 30 of 87

Owing to the dynamic nature of the Train Management Systems that ON-TIME will

need to interface to, the architecture will provide a middleware responsible for the col-

lection, dispatch and classification of events.

Every event is composed by a payload, defined in XML (using RailML or a custom rep-

resentation, backed-up by a proper XSD schema) and a series of attributes that helps

the infrastructure and the consumers to quickly understand the nature and the domain

of the information.

The classification of events allows event consumers to subscribe to specific class of

events only, easing network loads and simplifying the integration patterns.

An event will be composed of the following attributes:

 Id: Unique Id of the Event

 TypeId: Unique Id that will classify the event

 SenderId: Unique Id of the sender of the message. Useful for routing and secu-

rity

 Version: Version number of the event

 Name: Human-Readable name of the event

 Timestamp: the event timestamp

 XmlPayload: and XSD-backed XML fragment that does describe the event and

contains information.

Note: to ease extensibility, the architecture will manage events in an agnostic way.

Specifically, the contents of the events will not be considered as part of the routing

task, instead classified will be based purely on TypeId and Version.

For a detailed data dictionary of the event model and RailML, please refer to D7.1 - Li-

brary of Data and Communication Models.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 31 of 87

6.2.1 ConnectionConflictEvent

TypeId {9F9D1034-E31B-4160-9632-06262877BF02}

Created By: WP4

Consumed By: WP5

Description: Notifies that there’s a connection conflict in the planning of

several resources.

Data Payload List of TrainIDs affected by the conflict

 List of StationIDs affected by the conflict

Data Model Reference CONNECTION_CONFLICT_EVENT = ENTITY_HEADER +

{ CONFLICTING_TRAIN } + { CONFLICT_TIME } +

{ CONFLICT_LOCATION }

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:CONNECTION_CONFLICT_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:CONFLICTING_TRAIN
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:CONFLICT_TIME
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:CONFLICT_LOCATION

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 32 of 87

6.2.2 ConnectionScheduleAvailableEvent

TypeId {739B5024-4E67-492F-A75B-393F62615EFE}

Created By: TCS

Consumed By: WP4, WP5

Description: Notifies that a new ConnectionSchedule has been published to

the architecture and can be retrieved as Static Data via the Data

Provider Interface.

Data Payload TrainIDs of the trains affected

Data Model Reference CONNECTION_SCHEDULE_AVAILABLE_EVENT = ENTI-

TY_HEADER + TRAIN_ID

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_ID

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 33 of 87

6.2.3 CrewConflictEvent

TypeId {B6B1E7B5-991A-47F5-AE59-57329F0F3D11}

Created By: WP4

Consumed By: WP5

Description: Notifies that there’s a crew conflict arose during the re-planning

of the Real Time Traffic Plan.

Data Payload List of Crew IDs that are in conflict with each other

Data Model Reference CREW_CONFLICT_EVENT = ENTITY_HEADER +

{ CREW_DUTY_ID + { CREW_TASK_ID } }

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:CREW_CONFLICT_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:CREW_DUTY_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:CREW_TASK_ID

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 34 of 87

6.2.4 CrewScheduleAvailableEvent

TypeId {812B3FAB-809D-4E79-89D1-EA6888FCA6CA}

Created By: TCS

Consumed By: WP4, WP5

Description: Notifies that a new CrewSchedule has been published to the ar-

chitecture and can be retrieved as Static Data via the Data Pro-

vider Interface.

Data Payload ID of the timetable

Data Model Reference CREW_SCHEDULE_AVAILABLE_EVENT = ENTITY_HEADER +

TIMETABLE_ID

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 35 of 87

6.2.5 LineDisruptionEvent

TypeId {33FFEC5D-2B42-4294-BFB1-4463C37E7675}

Created By: TCS

Consumed By: WP4, WP5

Description: Notifies that there’s a line that has a disrupted.

Data Payload ID of the RailML Line representation

 Starting time of the disruption

 Time at which the disruption will end (for planned opera-

tions)

 Reason of the disruption

Data Model Reference LINE_DISRUPTION_EVENT = ENTITY_HEADER + LINE + TIME

_STAMP + (TIME_STAMP) + { 0-9 | A-z | . | , }

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:LINE_DISRUPTION_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:LINE
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 36 of 87

6.2.6 LockedSwitchDirectionEvent

TypeId {9F32D213-5C9E-4419-9332-D82A606C7C06}

Created By: TCS

Consumed By: WP4

Description: Notifies a system that a switch has been locked to a direction

Data Payload ID of the switch

 Switch direction

Data Model Reference LOCKED_SWITCH_DIRECTION_EVENT = ENTITY_HEADER +

SWITCH_ID + SWITCH_DIRECTION + TIME_STAMP

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:LOCKED_SWITCH_DIRECTION_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:SWITCH_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:SWITCH_DIRECTION
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 37 of 87

6.2.7 PlatformDisruptionEvent

TypeId {9BD541BD-3741-4122-83B7-7067B08E5F9B}

Created By: TCS

Consumed By: WP4, WP5

Description: Notifies the disruption of a platform

Data Payload ID of the Station containing the Platform

 ID of the Platform

 Starting time of the disruption

 Time at which the disruption will end (for planned operations)

 Disruption reason

Data Model Reference PLATFORM_DISRUPTION_EVENT

= ENTITY_HEADER + STATION_ID + PLATFORM_ID + TIME_STA

MP + (TIME_STAMP) + { 0-9 | A-z | . | , }

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:PLATFORM_DISRUPTION_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:STATION_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:PLATFORM_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 38 of 87

6.2.8 RealTimeTrafficPlanAvailableEvent

TypeId {F8AB774F-4473-4655-8226-87EFE49BB74E}

Created By: TCS

Consumed By: WP4, WP5

Description: Notifies that a new RealTimeTrafficPlan has been published to

the architecture and can be retrieved as Static Data via the Data

Provider Interface.

Data Payload No data

Data Model Reference REAL_TIME_TRAFFIC_PLAN_EVENT = ENTITY_HEADER

6.2.9 RollingStockChangeEvent

TypeId {B4AED5E5-1667-442F-A02B-0FE6E5255B61}

Created By: TCS

Consumed By: WP4, WP5

Description: Notifies that a Train has been incurred in a change of its composi-

tion

Data Payload ID of the Train

 RailML details of the new train composition

Data Model Reference ROLING_STOCK_CHANGE_EVENT =

ENTITY_HEADER + TRAIN_COMPOSITION

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:REAL_TIME_TRAFFIC_PLAN_AVAILABLE_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ROLLING_STOCK_CHANGE_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_COMPOSITION

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 39 of 87

6.2.10 RollingStockConflictEvent

TypeId {6F529394-A7DF-4C00-865F-725771CCC35C}

Created By: WP4

Consumed By: WP5

Description: Notifies that a Train has been incurred in a rolling stock conflict.

Data Payload ID of the Train

 ID of the conflicting rolling stocks

Data Model Reference ROLL-

ING_STOCK_CONFLICT_EVENT = ENTITY_HEADER + CO

NFLICTING_ROLLING_STOCK

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ROLLING_STOCK_CONFLICT_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ROLLING_STOCK_CONFLICT_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:CONFLICTING_ROLLING_STOCK
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:CONFLICTING_ROLLING_STOCK

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 40 of 87

6.2.11 RollingStockDisruptionEvent

TypeId {ED672C7E-D4A0-46D9-A07A-E8F68936244D}

Created By: TCS

Consumed By: WP4, WP5

Description: Notifies that a train had a rolling stock failure.

Data Payload ID of the Train

 ID of the Vehicle that has incurred in failure

 Details about occurred failure (type, severity, etc.)

Data Model Reference ROLL-

ING_STOCK_FAILURE_EVENT = ENTITY_HEADER + TRAIN

_ID + VEHICLE_ID +

{ ROLLING_STOCK_FAILURE_TYPE + ROLLING_STOCK_FA

ILURE_SEVERITY +

(ROLLING_STOCK_FAILURE_LOCATION) }

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ROLLING_STOCK_FAILURE_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ROLLING_STOCK_FAILURE_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:VEHICLE_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ROLLING_STOCK_FAILURE_TYPE
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ROLLING_STOCK_FAILURE_SEVERITY
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ROLLING_STOCK_FAILURE_SEVERITY
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ROLLING_STOCK_FAILURE_LOCATION

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 41 of 87

6.2.12 RollingStockScheduleAvailableEvent

TypeId {A900FA23-0161-4C14-9697-6F7C91F46E9B}

Created By: TCS

Consumed

By:

WP4, WP5

Description: Notifies that a new RollingStockSchedule has been published to the architec-

ture and can be retrieved as Static Data via the Data Provider Interface.

Data Pay-

load

 List of TrainIDs affected by the new schedule

Data Model

Reference

ROLLING_STOCK_SCHEDULE_AVAILABLE_EVENT = ENTITY_HEADER +

{TRAIN ID}

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_ID

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 42 of 87

6.2.13 SetRouteEvent

TypeId {190C587D-D782-422A-AB3C-F876893CAD6E}

Created By: WP4

Consumed By: TCS

Description: Notifies that a new route has been set.

Data Payload Route representation

Data Model Refer-

ence

SET ROUTE EVENT = ENTITY_HEADER + ROUTE_DETAILS

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:SET_ROUTE_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:STATIC_ROUTE

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 43 of 87

6.2.14 SignalStateChangeEvent

TypeId {FE543362-1140-4F46-A30A-57666C48AA52}

Created By: TCS

Consumed By: WP4

Description: Notifies that a signal has changed its state.

Data Payload ID of the signal

 Signal aspect

Data Model Reference SIGNAL_STATE_CHANGE_EVENT

 = ENTITY_HEADER + SIGNAL_ID + SIGNAL_ASPECT + TIME

_STAMP

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:SIGNAL_STATE_CHANGE_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:SIGNAL_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:SIGNAL_ASPECT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 44 of 87

6.2.15 StationDisruptionEvent

TypeId {0304D51D-FCC3-4CFB-93C1-9C0DD408C815}

Created By: TCS

Consumed By: WP4, WP5

Description: Notifies that there’s a station that has been disrupted.

Data Payload ID of the Station

 Starting time of the disruption

 Time at which the disruption will end (for planned operations)

 Reason of the disruption

Data Model

Reference

STA-

TION_DISRUPION_EVENT = ENTITY_HEADER + STATION_ID + TIME_S

TAMP + (TIME_STAMP) + { 0-9 | A-z | . | , }

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:STATION_DISRUPTION_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:STATION_DISRUPTION_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:STATION_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 45 of 87

6.2.16 SwitchDisruptionEvent

TypeId {4CC9A382-6893-4B01-B36D-B098C3D165DA}

Created By: TCS

Consumed By: WP4, WP5

Description: Notifies that there’s a switch that has been disrupted.

Data Payload ID of the Switch

 Starting time of the disruption

 Time at which the disruption will end (for planned operations)

 Reason of the disruption

Data Model Ref-

erence

SWITCH_DISRUPTION_EVENT = ENTITY_HEADER + SWITCH_ID + TI

ME_STAMP + (TIME_STAMP) + { 0-9 | A-z | . | , }

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:SWITCH_DISRUPTION_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:SWITCH_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 46 of 87

6.2.17 TDSectionOccupationEvent

TypeId {EE0D4827-2370-4FBC-980D-95BECA0BC6C1}

Created By: TCS

Consumed By: WP4

Description: Notifies that a track detection section has been occupied by a given train.

Data Payload ID of the section (unique)

 Train ID

 Time of occupation

Data Model

Reference

TD_SECTION_OCCUPATION_EVENT = ENTITY_HEADER + BLOCK_ID +

TRAIN_ID + TIME_STAMP

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TD_SECTION_OCCUPATION_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:BLOCK_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 47 of 87

6.2.18 TDSectionReleaseEvent

TypeId {0CC7C8DA-29D4-4A8C-B774-480AA24B830B}

Created By: TCS

Consumed

By:

WP4

Description: Notifies that a track detection section has been released by a given train.

Data Payload ID of the section (unique)

 Train ID

 Time of release

Data Model

Reference

TD_SECTION_RELEASE_EVENT = ENTITY_HEADER + BLOCK_ID + TRAI

N_ID + TIME_STAMP

http://en.wikipedia.org/wiki/Non-RAID_drive_architectures
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:BLOCK_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 48 of 87

6.2.19 TemporarySpeedRestrictionsEvent

TypeId {539785DA-EE7B-4670-8183-B16DAB6BA9D3}

Created By: TCS

Consumed By: WP4

Description: Defines a temporary speed restriction on a specified set of

tracks or lines.

Data Payload List of IDs of the RailML representation of Tracks and/or Lines

 Speed restriction value

Data Model Refer-

ence

TEMPORARY_SPEED_RESTRICTION = {LINE_ID} + {TRACK_ID}

+ SPEED_RESTRICTION

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TEMPORARY_SPEED_RESTRICTION
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:LINE
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRACK_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:SPEED_RESTRICTION

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 49 of 87

6.2.20 TrackDisruptionEvent

TypeId {82A2C530-6C98-4800-8A75-E1EA80BE2D29}

Created By: TCS

Consumed By: WP4, WP5

Description: Notifies that there’s a track that has been disrupted.

Data Payload ID of the Track

 Starting time of the disruption

 Time at which the disruption will end (for planned opera-

tions)

 Reason of the disruption

Data Model Reference TRACK_DISRUPTION_EVENT = ENTITY_HEADER + TRACK_I

D + TIME_STAMP + (TIME_STAMP) + { 0-9 | A-z | , | . }

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRACK_DISRUPTION_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRACK_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRACK_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 50 of 87

6.2.21 TrainEnterEvent

TypeId {66879F3F-6C86-4761-828F-8816FEFDB2DD}

Created By: TCS

Consumed By: WP4, WP5

Description: Notify that a new Train has entered the scenario. Usually this

event happens when a new train starts from a station.

Data Payload ID of the Train

 Time at which the train entered the scenario

Data Model Reference TRAIN_ENTER_EVENT = ENTITY_HEADER + TRAIN_ID + TIM

E_STAMP

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_ENTER_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 51 of 87

6.2.22 TrainExitEvent

TypeId {44051CCD-35C5-48FF-8E0A-9318920986A4}

Created By: TCS

Consumed By: WP4, WP5

Description: Notify that a new Train has exited the scenario. Usually this

event happens when a train finishes its route or exits the scenar-

io boundaries.

Data Payload ID of the Train

 Time at which the train left the scenario

Data Model Reference

TRAIN_EXIT_EVENT = ENTITY_HEADER + TRAIN_ID + TIME_

STAMP

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_EXIT_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 52 of 87

6.2.23 TrainMassChangeEvent

TypeId {6F789BE4-4D2C-4BDA-835D-622FD236FD3F}

Created By: TCS

Consumed By: WP4

Description: Notifies that the mass of a train changed.

Data Payload ID of the RailML Train Representation

 New mass of the train

Data Model Reference

TRAIN_MASS_CHANGE_EVENT = ENTITY_HEADER + TRAI

N_MASS

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_MASS_CHANGE_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_MASS
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_MASS

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 53 of 87

6.2.24 TrainPassengerCountChangeEvent

TypeId {75C07B0C-A86D-4ADF-9922-8394DD6EDB14}

Created By: TCS

Consumed By: WP4

Description: Notifies that the passenger count of a train changed.

Data Payload ID of the Train

 New passenger count

Data Model Reference TRAIN_PASSENGER_COUNT_CHANGE_EVENT = ENTI-

TY_HEADER + TRAIN_OCCUPATION

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_PASSENGER_COUNT_CHANGE_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_OCCUPATION

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 54 of 87

6.2.25 TrainPathEnvelopeAvailableEvent

TypeId {4681FF8F-63BB-4CA5-B9A6-195EEAC7A54D}

Created By: TCS

Consumed By: WP6

Description: Notifies systems that a new train path envelopes are available

Data Payload List of TRAIN_ID whose Train Path Envelope has been up-

dated.

Data Model Reference TRAIN_PATH_ENVELOPE_AVAILABLE_EVENT = ENTI-

TY_HEADER + { TRAIN_ID}

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_ID

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 55 of 87

6.2.26 TrainPositionChangeEvent

TypeId {5D77BD3C-7DAA-4939-8148-0F41C5E094A7}

Created By: TCS

Consumed By: WP4

Description: Notifies that the position of a train changed.

Data Payload ID of the Train

 Position of the train head

 List of the occupied tracks

Data Model Reference

TRAIN_POSTITION_CHANGE_EVENT = ENTITY_HEADER +

TRAIN_POSITION

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_POSITION_CHANGE_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_POSITION

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 56 of 87

6.2.27 TrainSpeedChangeEvent

TypeId {25485129-F540-4646-92E4-9AB375C114AA}

Created By: TCS

Consumed By: WP4

Description: Notifies that the speed of a train changed.

Data Payload ID of the Train

 New speed of the train

Data Model Reference

TRAIN_SPEED_CHANGE_EVENT = ENTITY_HEADER + TRAI

N_SPEED

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_SPEED_CHANGE_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_SPEED
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_SPEED

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 57 of 87

6.2.28 TrainSuppressedEvent

TypeId {883CD302-5A04-456A-A5C9-5C303D94BE8E}

Created By: TCS

Consumed By: WP4, WP5

Description: Notifies that a Train has been suppressed.

Data Payload ID of the Train

 Time at which the train has been suppressed

Data Model Reference

TRAIN_SUPPRESSED_EVENT

= ENTITY_HEADER + TRAIN_ID + TIME_STAMP + { 0-9 | A-z |

, | . }

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_SUPPRESSED_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_ID
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 58 of 87

6.2.29 UpdateConnectionScheduleEvent

TypeId {B5FC4768-8076-4DCB-A5D2-8AF120C0CD94}

Created By: WP5

Consumed By: TCS

Description: Publishes a new ConnectionSchedule to the platform.

Data Payload New ConnectionSchedule

Data Model Reference UPDATE_CONNECTION_SCHEDULE_EVENT = ENTI-

TY_HEADER + {CONNECTION}

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:CONNECTION

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 59 of 87

6.2.30 UpdateCrewScheduleEvent

TypeId {FB574C5E-2A21-4221-A5B1-78A8D81501EF}

Created By: WP5

Consumed By: TCS

Description: Publishes a new CrewSchedule to the platform.

Data Payload New CrewSchedule

Data Model Reference UPDATE_CREW_SCHEDULE_EVENT = ENTITY_HEADER +

{CREW TASK} + {CREW DUTY}

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:CREW_TASK
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:CREW_DUTY

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 60 of 87

6.2.31 UpdateRollingStockScheduleEvent

TypeId {8650BA4B-5786-4736-AD67-C1FABAA00B90}

Created By: WP5

Consumed By: TCS

Description: Publishes a new RollingStockSchedule to the platform.

Data Payload New RollingStockSchedule

Data Model Reference UPDATE_ROLLING_STOCK_SCHEDULE_EVENT = ENTI-

TY_HEADER + {VEHICLE} + {TRAIN COMPOSITION}

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_COMPOSITION

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 61 of 87

6.2.32 UpdateRealTimeTrafficPlanEvent

TypeId {07693469-9F7A-480D-B808-6DB21E4A9CC6}

Created By: WP4

Consumed By: TCS

Description: Publishes a new traffic plan to the platform.

Note that there’s a difference between a UpdateRealTimeT-

rafficPlanEvent and a RealTimeTrafficPlanAvailableEvent. The

former actually publishes the new data on the platform, the

latter will just notify the modules that a new traffic plan is

available as Static Data.

Data Payload New traffic plan

Data Model Reference UPDATE_REAL_TIME_TRAFFIC_PLAN_EVENT

= ENTITY_HEADER + REAL_TIME_TRAFFIC_PLAN + TIME_

STAMP

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:UPDATE_REAL_TIME_TRAFFIC_PLAN_EVENT
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:REAL_TIME_TRAFFIC_PLAN
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TIME_STAMP

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 62 of 87

6.2.33 UpdateTrainPathEnvelopeEvent

TypeId {DB06D35A-7714-4CBF-AF7A-CBA7E4C01A60}

Created By: WP4

Consumed

By:

TCS

Description: Publishes a new train path envelope to the system.

Data Pay-

load

 Train path envelopes with time windows of signal passing (at critical posi-

tions)

 Stopping part of real-time traffic plan

Data Model

Reference

UPDATE_TRAIN_PATH_ENVELOPE_EVENT = ENTITY_HEADER +

TRAIN_PATH_ENVELOPE

http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:ENTITY_HEADER
http://147.188.136.5/ontimedatadictionary/index.php/Dictionary:TRAIN_PATH_ENVELOPE

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 63 of 87

7 INTEGRATION REQUIREMENTS

7.1 Integration Interfaces

Different modules of the On-Time Architecture will communicate using standard inter-

faces. For sake of clarity, we will represent these interfaces as standard UML interfac-

es definitions but, in most of the cases, they have to be interpreted as web Services

interfaces of distributed systems.

Since the rise of Web 2.0 technologies, the difference between static and distributed

interfaces are becoming more and more subtle, some languages doesn’t make any dif-

ference between the two, since communication frameworks and high-level program-

ming languages can abstract the communication layer from the functional specifica-

tions.

Since the architecture is conceived to be modular and flexible, remote interfaces can

become native and vice-versa, the architecture definition poses no limit on how the

modules can be coupled.

Functionally, the On-Time architecture adhere to a minimalist design pattern. Even

though there are several guidelines that the modules must comply to, they are very

simple building blocks that can be used in different ways to achieve the desired re-

sults. In addition, the technology used allows for cross-language, cross-OS and cross-

technologies integration without too much effort.

The architecture will distinguish modules. Modules have been conveniently named

against the WP name of the project. A single WP can have multiple modules and dif-

ferent implementations (for example different WP4 Modules can exists, with different

kind of optimization and planning algorithm). It is responsibility of the architecture to

keep communications between the modules and forward data and messages to the

correct endpoints.

Basically, a module must carry on these functions:

 Be able to subscribe for events.

 Be able to publish events.

 Be able to access the Static and Operational Data Provider of the architecture.

These three functional characteristics are the basics at which a module must adhere to

be able to carry out its functions.

To be able to receive events, a module need to implement the EventConsumer Inter-

face. The EventConsumer Interface it is the basic requirement to process messages

and it is shared both by modules than by the architecture (since also the architecture

must be able to receive messages from modules).

To access Operational and Static Data a module must know the location of a Data Pro-

vider Service. This service is an abstraction between different systems that stores and

manages data for railway systems, called Train Control System or TCS.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 64 of 87

Finally, to be able to register as a subscriber or a publisher of events the module will

need to know the location of a SubscriptionService.

In the following chapters, we will explain the external integration interfaces and the

internal integration interfaces of the architecture.

The External integration interfaces are shared between modules and the architecture,

the Internal integration interfaces are maintained between the different modules of

the architecture itself.

7.1.1 External Integration Interfaces

Publish/Subscribe Interface

Provided by: Architecture

The Publish/Subscribe interface gives modules within the system the ability to register

their interest in receiving notifications describing system state changes.

The behaviour of a publishing registration request is as follows:

 The module interested to dispatch events will send a tuple [TypeId, Version]

 A validation of the request is performed

 If the request is valid, the platform will register the endpoint and will send a

unique token id to as a response

 From this moment on, the module is allowed to publish events to the platform

The behaviour of a subscription registration request is as follows:

 A module will contact the P/S Interface endpoint sending one or more tuples:

[TypeId, version]

 A validation of the request is performed

 If all the issued tuples [TypeId, version] are available and the request is valid,

the SubscriptionService will acknowledge the subscriptions;

 If one of the issued tuples [TypeId, version] is not available, then the request is

not valid, and the SubscriptionService will respond with an error.

Please note: from the publishing module point of view, there is only a single endpoint

where to send events. If a module that is attempting to publish data is not registered

or has a token that is no longer valid, any event it issues will be automatically discard-

ed by the communication middleware.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 65 of 87

Figure 4 Register as Publisher - Activity diagram

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 66 of 87

Figure 5 Register as Subscriber - Activity diagram

RegisterAsSubscriber informs the platform that a module wants to be registered as

a subscriber for a given event id and version number. The platform stores the data

about the subscriber and creates a new entry in the communication bus for the mod-

ule.

The RegisterAsPublisher message informs the platform that a module needs to pub-

lish events to the system. Upon receipt of the message, the platform creates a logical

link and a broadcast message queue for the new event stream (if not already pre-

sent). It is important to note that multiple systems from the same logical module can

register as event publishers. In that case, the platform will not guarantee causal or-

dering on those messages.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 67 of 87

7.1.2 EventConsumer Interface

Can be implemented by: Architecture, Modules

Every module within the architecture (including optimization plugins) that needs to

process events, has to implement the IOTEventConsumer Interface. This interface ab-

stracts an endpoint that consumes an ON-TIME event, which is always a derived class

of OTBasicEvent.

The IOTEventConsumer interface should behave asynchronously, ensuring that the

application is not blocked by the receipt of events. As ON-TIME is using topic-based

routing, the architecture won’t process events based on their content but will just

route them to endpoints as requested by module subscriptions.

The ProcessEvent message is an endpoint to receive messages. To avoid a blocking

connection, the method should be implemented as a non-blocking event receiver that

should do as little as possible before relinquishing control to the architecture message-

dispatching thread.

Figure 6 Non-Blocking behaviour

Web Services have synchronous message models and in any case, algorithm computa-

tion should be linked to the ProcessEvent interface. What should be done in the mes-

sage is to check for data validity and correct model representation, scheduling the

processing of the message payload in another, internal to the module thread.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 68 of 87

7.1.3 DataProvider Interface

Implemented by: Architecture

The IOTDataProvider Interface is a public interface used to access read-only scenario

data.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 69 of 87

The IOTDataProvider is an abstraction of the TCS systems that ON-TIME will interact

with, and provides methods by which modules within the platform may access data

managed by those systems.

General conventions: The methods will always be provided with two basic signa-

tures: one to access the current data, and one to access the data at a given DateTime.

In the latter case, the system will return the last data structure published at a date

and time lesser than or equal to the refDate provided. Methods that can be used to

access one or more data entities given their IDs will implement this behaviour: if the

IDs array is populated, they will return information on the specific items, if the ID ar-

ray is null (or empty), they will return data for all the items valid at that given time.

OTInfrastructure GetInfrastructureData();
OTInfrastructure GetInfrastructureData(DateTime refDate);

Provides a RailML representation of the current static infrastructure. The static infra-

structure contains all the following information:

 Tracks

 Lines

 Stations

 Signals

 Interlocks

OTRealTimeTrafficPlan GetRealTimeTrafficPlan();
OTRealTimeTrafficPlan GetRealTimeTrafficPlan(DateTime refDate);

Provides information about the traffic plan, including:

 Active lines

 Current Trains

 Timetables

OTCrewSchedule GetCrewSchedule(OTEntityId[] ids);
OTCrewSchedule GetCrewSchedule(DateTime refDate, OTEntityId[] ids);

Provides a data interface to the crew schedule of an abstracted crew management

system. The method will report the crew schedule for the current or reference day.

OTRollingStockSchedule GetRollingStockSchedule(OTEntityId[] ids);
OTRollingStockSchedule GetRollingStockSchedule(DateTime refDate, OTEntityId[] ids);

Provides a resource plan for all the current planned rolling stock and railway move-

ments.

OTInfrastructureItem GetInfrastructreUnavailability();
OTInfrastructureItem GetInfrastructreUnavailability(DateTime refDate);

Provides access to a list of all sections of the infrastructure that are current unavaila-

ble for use.

OTTrack[] GetTracks(OTEntityId[] ids);
OTTrack[] GetTracks(DateTime refDate, OTEntityId[] ids);

Returns RailML information of a given tracks.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 70 of 87

OTLine[] GetLines(OTEntityId[] ids);
OTLine[] GetLines(DateTime refDate, OTEntityId[] ids);

Returns RailML information of a given set of Lines.

OTStation[] GetStations(OTEntityId[] ids);
OTStation[] GetStations(DateTime refDate, OTEntityId[] ids);

Returns RailML information of a given sets of Stations.

OTTrain[] GetTrains(OTEntityId[] ids);
OTTrain[] GetTrains(DateTime refDate, OTEntityId[] ids);

Provides RailML information of a given sets of Trains.

OTSignal[] GetSignals(OTEntityId[] ids);
OTSignal[] GetSignals(DateTime refDate, OTEntityId[] ids);

Provides RailML information of a given sets of Signals, with their current states.

OTInterlock[] GetInterlocks(OTEntityId[] ids);
OTInterlock[] GetInterlocks(DateTime refDate, OTEntityId[] ids);

Provides details for interlock data entities, with their current switching states.

OTTimetable[] GetTimetables(OTEntityId[] ids);
OTTimetable[] GetTimetables(DateTime refDate, OTEntityId[] ids);

Provides access to a given sets of timetables defined in the TCS. Different Timetables

may refer to different “layers” of a same, global timetable, or other types of classifica-

tions associated to a Timetable.

OTOperationalTimetable[] GetOperationalTimeTables(OTEntityId[] ids);
OTOperationalTimetable[] GetOperationalTimeTables(DateTime refDate, OTEntityId[]

ids);

Provides access to a given sets of operating timetables present in the TCS. Different

Timetables may refer to different “layers” of a same, global timetable, or other types

of classifications associated to a Timetable. An Operating Timetable refer to a timeta-

ble that is current in execution, thus, to a given time of the day, this Timetable will

have a part that is consolidated and has the real arrival and departure time at stations

and a part (after the current date and time at which the timetable was requested) that

will still consist of the planned stops.

OTCommercialTimetable[] GetCommercialTimeTables(OTEntityId[] ids);
OTCommercialTimetable[] GetCommercialTimeTables(DateTime refDate, OTEntityId[] ids);

Provides access to a given sets of commercial timetables present in the TCS. Different

timetables may refer to different “layers” of a same, global timetable, or other types

of classifications associated to a timetable. A commercial timetable lists only stops

that are useful from a commercial point of view, such as stops that are used to em-

bark or disembark passengers.

OTConnectionConstraint[] GetConnectionConstraints(OTEntityId[] ids);
OTConnectionConstraint[] GetConnectionConstraints(DateTime refDate, OTEntityId[]
ids);

Gets the connection constraints that are currently valid.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 71 of 87

OTRollingStockConstraint[] GetRollingStockConstraints(OTEntityId[] ids);
OTRollingStockConstraint[] GetRollingStockConstraints(DateTime refDate, OTEntityId[]
ids);

Gets the rolling stock constraints that are available at the given time.

OTCrewConstraint[] GetCrewConstraints(OTEntityId[] ids);
OTCrewConstraint[] GetCrewConstraints(DateTime refDate, OTEntityId[] ids);

Gets the crew constraints that are available at the given time.

OTDelayInfo[] GetTrainDelayInfo(OTEntityId[] ids);
OTDelayInfo[] GetTrainDelayInfo(DateTime refDate, OTEntityId[] ids);
OTDelayInfo[] GetLineDelayInfo(OTEntityId[] ids);
OTDelayInfo[] GetLineDelayInfo(DateTime refDate, OTEntityId[] ids);
OTDelayInfo[] GetStationDelayInfo(OTEntityId[] ids);
OTDelayInfo[] GetStationDelayInfo(DateTime refDate, OTEntityId[] ids);
OTDelayInfo[] GetTimetableDelayInfo(OTEntityId[] ids);
OTDelayInfo[] GetTimetableDelayInfo(DateTime refDate, OTEntityId[] ids);

Get the delay information aggregated by: Trains, Lines, Station or Timetable Ids.

7.1.4 Routing Interface

Provided by: Architecture

The Routing interface is used internally within the messaging layer and allows the ar-

chitecture to determine the endpoints subscribed to specified event types. Whenever a

new message is received, the architecture checks the routing interface for a list of in-

terested modules (those specifying the correct TypeId and Version at subscription-

time) and dispatches the event as appropriate.

Events can be sent to the architecture by choosing between two different approaches.

Client modules can integrate directly using the AMQP protocol, pushing event messag-

es to WP7 message exchanges, as shown in the following picture:

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 72 of 87

Figure 7 Publishing using AMQP

This approach is preferrable for modules that have a high rate of message publishes,

since it does not require any additional layer on the AMQP protocol.

On the other hand, a slight effort should be spent to build an AMQP client

implementation. For applications that are not going to have lots of messages to

publish, a REST integration point will be possibile. This approach adds to the previous

one an additional layer that exposes a REST web service and communicates with the

internal WP7 AMQP message queues. Clients make PUSH requests to the REST web

service, and it will internally push the received message to the queues. The rest of the

processing remains invariate.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 73 of 87

Figure 8 Publishing using REST WP7 Entry Point

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 74 of 87

For subscriber clients, the possible approaches are the same. Clients can either

integrate directly by AMQP, or expose a REST interface that will be used by the

architecture to deliver messages.

In the following picture, a direct integration is shown. The client must be AMQP-

capable and implement an asynchronous receiver client, as described in the

EventConsumer paragraph.

Figure 9 Message delivery to clients using AMQP

The following picture shows the other mechanism that can be used. On the approach

seen above, an additional layer is added, that will implement the REST integration

point from the architectural side.

This layer will add an internal module that receives event messages from the WP7

AMQP queues and makes PUSH requests to the REST web service exposed by the

client. The endpoint of the client-side web service is specified at subscription-time by

the module.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 75 of 87

Figure 10 Message delivery using client-side REST web service

7.2 Integration with TCS

The TCS abstraction of ON-TIME is a system (or a collection of systems) that manages

the operation and the monitoring of railroad operations, rolling stocks and crews. The

TCS is the owner of a great deal of information, such as:

 The physical infrastructure and its state

 The Timetables (both operational and commercial) and their maintenance

 The Rolling Stock Database and its management

 The Crew Database and its management

 The Sensor Network that collects data and monitors the operation

Owing to the crucial, safety-critical role of the TCS in the operation of the railway in-

frastructure, it is important that the ON-TIME system should not interfere with the

management of these data structures. The central nature of the TCS in railway opera-

tion makes the TCS abstraction an ideal location for the repository of all “master data”

regarding the railway infrastructure and its available resources (in particular in terms

of ensuring the most up-to-date view of the world available at any given moment).

The TCS Abstraction will also be responsible for the dispatch of events notifying sys-

tem modules of the current traffic state and any other changes in the system.

From a functional perspective, the TCS will dispatch the following types of event:

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 76 of 87

Movements

Movement events will help to track a train and to locate it within the infrastructure.

Since different modules need to track the train movements at different level of detail,

movement events are classified using one of several frames of reference:

 Stations. Train Id/Station Id tuple to notify the entering or exiting of a train

from a station.

 Signals. Whenever a train passes a signal, the train Id and signal Id are noti-

fied.

 Track Circuits.

 Axle Counters.

 Switches.

Disruptions

Disruption events deal with the availability/unavailability of different parts of the infra-

structure:

 Line.

 Track Section.

 Platform.

 Station.

 Switch.

Trains

This event category relates to the availability of trains and variations in their composi-

tion (for example the splitting of 6-car units into 2, 3-car units).

 Availability. When a new train “enters” the scenario (it becomes available for

traffic) or has been suppressed.

 Composition. The physical composition of a train: number of carriages and so

on.

Signals

Signal events will notify the platform of changes in signal state.

 State. The state of a signal.

As with other modules, upon its activation the TCS will publish a list of the event types

it will start to dispatch using the SubscriptionService interface.

The TCS abstraction must be able to receive input from other modules in the system.

Since a TCS is a real-time, event-based system (or a collection of systems), key-data

entities in the traffic model will be updated using event notifications.

The events that the TCS Abstraction will be able to consume are:

 UpdateRealTimeTrafficPlan. This event will include all the details for a new

traffic plan of a given node or scenario. It will include new timetables, train

scheduling and lines. A train is considered as suppressed if it does not appear

in the new traffic plan.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 77 of 87

 Update Constraints:

o Crew

o Rolling Stock

o Infrastructure

 Update Disruptions: Normally disruptions are something that happens in the

field. For the sake of demonstration and for other operational needs, disrup-

tions may be planned using the same events that will regulate field operations,

including:

o LineDisruptionEvent

o TrackDisruptionEvent

o PlatformDisruptionEvent

o StationDisruptionEvent

o SwitchDisruptionEvent

 Update Trains. Trains may be placed into the scenario (for example when they

begin service), removed from it (when they are exiting the scenario boundary

or finishing services) or when they need to be suppressed due to operational

(or optimization) needs. Train update events include:

o TrainEnterEvent

o TrainExitEvent

o TrainSuppressedEvent

o RollingStockChangeEvent

From the perspective of the involved information transfers, most train update events

will be identical to those generated by the TCS.

As with other modules in the platform, the TCS abstraction should implement the IOT-

ventConsumer interface in order to be able to receive and manage events coming

from the platform.

7.2.1 Integration with WP3 Modules

Since the creation of a complete time-table is not a real-time task but it’s a more

complex, long, running task, the WP3 output (timetables of a whole year, for exam-

ple) will be treated as a RailML input for the TCS systems that deals with timetabling

operations.

This means that the WP3 modules will provide a RailML timetable as the initial state of

the system. Other modules (like WP4) will use and modify this timetable using the

Event Model and Data Processor Services of the architecture.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 78 of 87

7.3 Integration with WP4 Modules

Figure 9 - WP4 Integration Flow

In the context of WP4, the architecture will manage the flow of information between

the abstracted TMS and the underlying WP4 System. The WP4 implementation has a

single entry point that communicates with the architecture, the TSM (Traffic State

Monitoring) module. This module will receive events from the architecture and will

process them.

Output will be performed by the TCR (Traffic Conflict Resolution) module that will gen-

erate update events for the current timetable, list of train orders and constraint set.

These updates will be published and returned to the TMS.

Data communication will be implemented via two different dynamic mechanisms:

event-based for real time data exchange and request-based for static and published

data structures.

WP4 will consume events of the following types:

 TDSectionOccupationEvent

 TDSectionReleasingEvent

 SignalStateChangeEvent

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 79 of 87

 LockedSwitchDirectionEvent

 SetRouteEvent

 TemporarySpeedRestrictionEvent

 InfrastructureUnavailability

o Treated implicitly, by issuing modifications to the static infrastructure

data.

 Disruptions events:

o RollingStockDisruptionEvent

o LineDisruptionEvent

o PlatformDisruptionEvent

o StationDisruptionEvent

o SwitchDisruptionEvent

o TrackDisruptionEvent

 NewRealTimeTrafficPlanEvent

o Used to notify modules that a new traffic plan has been issued. The new

traffic plan data will be provided by the TCS systems)

 TrainRelatedMeasurementsEvents

o TrainMassChangeEvent

o TrainPassengerCountChangeEvent

o TrainSpeedChangeEvent

o TrainPositionChangeEvent

WP4 will generate events of the following types:

 UpdateRealTimeTrafficPlanEvent

 SetRouteEvent

 RollingStockConflictEvent

 CrewConflictEvent

 ConnectionConflictEvent

Conflicts are generated when the real time traffic planning modules cannot provide a

good solution to the scheduling problem to be resolved. Connection conflicts may arise

when there are disruptions at the infrastructure level.

Infrastructure disruptions are not modelled as events and will be managed at static

data level. If a track becomes unavailable, it should be marked as such on the static

data (or removed from the data itself). Since WP4 needs to refresh its infrastructure

data as often as it runs, this approach may be suitable.

7.3.1 TrainPathEnvelopeComputation module (TPEC)

The TPEC module computes trains path envelopes for trains, starting from a commer-

cial timetable, the current real-time traffic plan and DAS parameters. The result will

be, for each train, a sequence of time windows, indicating minimum and maximum

passing times for every signal in the train path.

The module will be called by WP4 internally, so no events coming from the architec-

ture are consumed.

As output, the TrainPathEnvelopeAvailableEvent is generated.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 80 of 87

7.4 Integration with WP5 Modules

Figure 10 - WP5 Integration Flow

In the context of WP5, the architecture will manage the flow of information between

the abstracted TCS and the underlying WP4 System. It will be responsible for the

resolution of conflicts that arise because of re-planning operations within WP4 or that

are due to changes in the state of the real-world rail network.

In the context of the data structures within the architecture, WP5 will mainly manage

resource conflicts such as:

 Crew Conflicts

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 81 of 87

 Rolling Stock Conflicts

 Connection Conflicts

In addition to conflicts detected from WP4, WP5 will also manage disruption events

generated by the TCS. These events could be generated by other systems or simply

be collected from the field. The architecture will provide an abstraction by which these

messages can be collected.

The WP5 modules will also be responsible for contingency planning in the event of

great disruptions. Generally, these plans are not stored in a data structures in the TCS

because emergency crews define them as the emergency develops.

WP5 has a strong interconnection with WP4. In keeping with the distributed nature of

the system, the modules will communicate via events as described previously.

Here is an activity diagram of the interactions between WP4 and WP5:

Figure 11 - WP5-WP4 interactions

It is important to note that during the execution of WP5, all other conflicts are ignored

and WP4 will continue to work with the old resource plan until the WP5 will publish a

new, optimal, one. Access to the new schedules are made using the DataProvider Ser-

vice of the architecture, to avoid concurrency and data consistency issues. The

DataProvider, in fact, will publish only the latest version of the resource schedules to

other modules.

Another important feature is that WP5 will try to use WP4 algorithms to produce sev-

eral resource optimizations alternatives to choose the best one for a given task.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 82 of 87

WP5 modules will handle these events to intercept resource conflicts coming from the

TCS that will collect them from the field:

 ConnectionConflictEvent

 CrewConflictEvent

 RollingStockConflictEvent

To notify the TCS that there is a change in the resource schedule, WP5 will update the

schedules using these events:

 UpdateConnectionScheuduleEvent

 UpdateCrewScheduleEvent

 UpdateRollingStockScheduleEvent

In response to the updates, the TCS will broadcast events to notify other modules that

newer versions of Schedules are available:

 ConnectionScheduleAvailableEvent

 CrewScheduleAvailableEvent

 RollingStockAvailableEvent

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 83 of 87

7.5 Integration with WP6 Modules

According to the functional specification of WP6, Driver Advisory systems have differ-

ent deployment and functional models. The main concern integrating driver advisory

system is to define how the data interface and the flow of information is managed be-

tween different technical solutions.

We can provide three different type of architecture:

 Server-Side management of information. Data is handled in a centralized

server. Every client (the driver advisory console) will connect to the server to

receive driving aids. This kind of integration has the most potential in terms of

services offered since the server-side infrastructure is more powerful and can

access additional services. Communication-wise, the solution is weak because

the clients need to have a constant connection (or a connection with few inter-

ruptions) to receive data that have to be displayed to the drivers.

 Client-Side management of information. Data is downloaded in raw format

from a repository and elaboration is made inside the client on-board the train.

This solution is the most robust in terms of communication because the con-

nection with a repository has to be made only when the data is needed (it can

be done using the communication infrastructures present at the stations) and

all the other process can be carried on offline. The solution need more powerful

clients and robust protocols able to carry data with very low bandwidth re-

quirements.

 Hybrid management of information. In this scenario, some operations are

server-side and other are client-side. In most cases, this is the right trade-off

since this approach will allow for a rich server-side data management and a

more agile client-side data management when the locomotive is offline, for ex-

ample.

Since all these approach are industry standard solutions, the architecture needs to

comply with these different interaction models without penalizing any of them.

It is important to stress that, from the architectural point of view, the most important

part is managing a consistent data flow and efficient, standard channels of communi-

cation. Looking at the requirements for WP6 modules, we can locate two different kind

of data: static and dynamic infrastructure and operational data, data that can be

changed according to events (in this case, the train envelopes produced by the WP4

modules).

To maintain a general, coherent implementation of the data flow, WP6 models need to

know when a train envelope change and have APIs to recover these data, if needed.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 84 of 87

Figure 11 - WP6 Integration Flow

From a process point of view, when WP4 creates a new Train Envelope, it will notify

the architecture. The availability of a new collection of train envelopes will trigger this

chain of actions:

1. The Architecture Event Processor will forward the UpdateTrainPathEnvelopeEvent

to the TCS system that subscribed it.

2. The TCS system consumes the Event Payload and stores the new Train Path En-

velope, ensuring data consistency.

3. The TCS system publish a TrainPathEnvelopeAvailableEvent to the architecture.

4. The WP6 module will consume the TrainPathEnvelopeAvailableEvent and will take

notice of the TRAIN_IDs included in the payload.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 85 of 87

5. When the internal logic of the WP6 module will require it, the WP6 module can

ask the Architecture Data Provider for the TPE associated to a TRAIN_ID for

which it has received a notification of availability.

The TCS will store TPEs in a transactional, FIFO-like pattern. This means that every

data transaction will be an atomic, first come, first served communication.

Since events have data that can be used to order communication streams (such as

timestamps, sender information and so on), it’s left to the WP6 implementation to

provide means to implement message-ordering mechanics or other data consistency

patterns, since they can vary upon the different kind of implementation a WP6 module

may have.

Functional and technical requirements

specification for perturbation management

<Document code: ONT-WP07-T-VTM-020-04 > Page 86 of 87

8 REFERENCES

Tanenbaum, A. S., & Van Steen, M. (2002). Distributed systems (Vol. 2). Prentice

Hall.

Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A. M. (2003). The many fac-

es of publish/subscribe. ACM Computing Surveys (CSUR), 35(2), 114-131.

Richardson, L., & Ruby, S. (2008). RESTful web services. O'Reilly Media.

Pautasso, C., Zimmermann, O., & Leymann, F. (2008, April). Restful web services vs.

big'web services: making the right architectural decision. In Proceedings of the 17th

international conference on World Wide Web (pp. 805-814). ACM.

Membrey, P., Plugge, E., & Hawkins, T. (2010). The definitive guide to MongoDB: the

noSQL database for cloud and desktop computing. Apress.

Ramakrishnan, R., & Gehrke, J. (2000). Database management systems. Os-

borne/McGraw-Hill.

Vinoski, S. (2006). Advanced message queuing protocol. Internet Computing,

IEEE, 10(6), 87-89.

Functional and technical requirements specification for perturbation

management

<Document code: ONT-WP07-T-VTM-020-04 > Page 87 of 87

