

ON-TIME

Optimal Networks for Train Integration Manage-

ment across Europe

WP8 user requirements and system specifications

Grant Agreement N°: FP7 - SCP0 – GA – 2011 - 265647

Project Acronym: ON-TIME

Project Title: Optimal Networks for Train Integration Management across Europe

Funding scheme: Collaborative Project

Project start: 1 November 2011

Project duration: 3 Years

Work package no.: WP8

Deliverable no.: ONT-WP08-D-ANS-005-02; Rev 0

Status/date of document: Final, 31/10/2013

Due date of document: 31/10/2013

Actual submission date: 31/10/2013

Lead contractor for this document: Ansaldo

 Genova, Italy

Project website: www.ontime-project.eu

Project co-funded by the European Commission within

the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public

PP Restricted to other program participants

(including the Commission Services)

RE Restricted to a group specified by the consortium

(including the Commission Services)

X

CO Confidential, only for members of the consortium

(including the Commission Services)

http://www.ontime-project.eu/

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 2 of 45

Revision control / involved partners

Following table gives an overview on elaboration and processed changes of the docu-

ment:

Revision Date Name / Company short name Changes

1 31/10/2013 Antonio Miano / ASTS First issue

Following project partners have been involved in the elaboration of this document:

Partner

No.

Company short name Involved experts

1 NTT Data Matteo Anelli

2 NTT Data Daniele Carcasole

3 NTT Data Bruno Ambrogio

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 3 of 45

Executive Summary

This document describes the user requirements of the OnTime Demonstrator.

The demonstrator can be considered the OnTime graphical user interface. It is made

up of a Train Graph (TG), a Train Describer (TD), and a general purpose HMI.

TG and TD layouts depend on RailML data flow that comes from simulator. The first

part of this document (see section 0 and section 2) describes how to convert the pre-

vious data in a TG/TD compatible format.

In section 3.1 and 0, communication protocol and user interactions of TG and TD are

described.

HMI is described in section 0. The first two paragraphs are related to the communica-

tion protocol; the third shows a proposal of the HMI forms and their usage.

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 4 of 45

Table of contents

EXECUTIVE SUMMARY .. 3

TABLE OF CONTENTS ... 4

TABLE OF FIGURES .. 5

TABLE OF ABBREVIATIONS ... 6

1 INTRODUCTION ... 7

2 SYSTEM SPECIFICATION ... 8

2.1 Software requirements .. 8

2.2 Hardware requirements ... 8

2.3 Performance requirements ... 8

2.4 Development requirements .. 8

2.5 Environmental requirements... 8

3 RAILML TO TD CONVERTER ... 9

3.1 Graphic formatter tool ... 9

3.2 RailML ... 9

3.3 SVG .. 9

3.4 Converter schema railML to SVG .. 10

4 RAILML TO ASTS ENVIRONMENT CONVERTER .. 14

4.1 Wayside elements .. 14

4.2 Logical elements .. 14

4.3 Mimic panels data .. 14

4.4 Controls and indications .. 14

4.5 ARS data .. 14

5 GRAPHICAL INTERFACES ... 15

5.1 Train Graph ... 15

5.1.1 Protocols .. 15

5.1.2 Interactions .. 17

5.2 Train Describer .. 18

5.2.1 Protocols .. 18

5.2.2 Interactions .. 20

5.3 HMI .. 21

5.3.1 Protocols - Events .. 21

5.3.2 Protocols - Cost Functions Parameters .. 27

5.3.3 Protocols – Data Provider.. 30

5.3.4 HMI forms description and interactions ... 33

6 REFERENCES .. 45

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 5 of 45

Table of figures

Figure 1 - Demonstrator general schema .. 7

Figure 2 - RailML to svg conversion process ... 10

Figure 3 - RailML to svg conversion process - Step 1 ... 10

Figure 4 – RailML to svg conversion process – Step 2 .. 11

Figure 5 - RailML to svg conversion process – Step 3 .. 12

Figure 6 - Conversion process .. 13

Figure 7 - Example of animation logic for TD .. 13

Figure 8 - Cost Function Parameters Set and Retrieve ... 27

Figure 9 - Events Scenario ... 28

Figure 10 - System request - Type YN ... 34

Figure 11 - System Request - Type Q .. 34

Figure 12 - System Request - Type L .. 35

Figure 13 - Main demonstrator window .. 37

Figure 14 - System boot form .. 38

Figure 15 - Cost function parameters form ... 40

Figure 16 - Displaying a text .. 41

Figure 17 - Displaying a number ... 42

Figure 18 - Displaying a list ... 43

file:///C:/share/progetti%20europei/ON%20TIME/WP8%20System%20requirements%20and%20specifications_v7.docx%23_Toc370973909
file:///C:/share/progetti%20europei/ON%20TIME/WP8%20System%20requirements%20and%20specifications_v7.docx%23_Toc370973911
file:///C:/share/progetti%20europei/ON%20TIME/WP8%20System%20requirements%20and%20specifications_v7.docx%23_Toc370973916
file:///C:/share/progetti%20europei/ON%20TIME/WP8%20System%20requirements%20and%20specifications_v7.docx%23_Toc370973917
file:///C:/share/progetti%20europei/ON%20TIME/WP8%20System%20requirements%20and%20specifications_v7.docx%23_Toc370973924
file:///C:/share/progetti%20europei/ON%20TIME/WP8%20System%20requirements%20and%20specifications_v7.docx%23_Toc370973925
file:///C:/share/progetti%20europei/ON%20TIME/WP8%20System%20requirements%20and%20specifications_v7.docx%23_Toc370973926

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 6 of 45

Table of abbreviations
ONT ONTIME project code on the repository

TG Train Graph

TD Train Describer

RTTP Real Time Traffic Plan

GUI Graphical User Interface

RTC Rational Team Concert

SVG Scalable Vector Graphics

HMI Human-Machine Interface

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 7 of 45

1 INTRODUCTION

Demonstrator is the module of the OnTime project that will be developed to give the

project itself a Graphical User Interface (GUI).

The GUI will look like the one depicted at the top of the following picture.

The picture shows the Train Graph (TG), the Train Describer (TD) and the HMI main

window as described in 0. For convenience, it has been represented as a floating win-

dow.

In green it is depicted the data flow from OnTime System to demonstrator, in blue the

data flow from demonstrator to OnTime System.

OnTime System

 System boot

 Cost function parameters

 User interactions

 User requests

 User answers

 RailML info

 Timetables

 Real events

 System requests

 System outcomes

Figure 1 - Demonstrator general schema

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 8 of 45

SYSTEM SPECIFICATION

1.1 Software requirements

 The demonstrator shall be written in Java 1.7.

 The graphic library used shall be JavaFX.

1.2 Hardware requirements

 The workstation in which the system runs shall provide two monitors, one for

TD and one for TG.

 The workstation in which the system runs shall have at least 4Gb of RAM.

 The workstation in which the system runs shall have at least a 3th generation

I5 Intel processor.

1.3 Performance requirements

 The time between a user action and the demonstrator response shall be less

than a second.

 The time between a system outcome and its representation on the demonstra-

tor shall be less than a second.

1.4 Development requirements

 The tool used for the development shall be Netbeans 7.x.

 The tool used for versioning shall be RTC.

1.5 Environmental requirements

 Demonstrator shall be able to run on a Windows 8 workstation.

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 9 of 45

RAILML TO TD CONVERTER

1.6 Graphic formatter tool

The objective of this converter is to extract and transform geographic data of a rail

network.

The conversion is based on reading a railML file and the production of one or more

patterns in SVG format.

1.7 RailML

RailML is a generic language that can be used to describe railway-related data. The

language specification contains subschemas for three main areas: infrastructure (with

subsets for lines and stations), timetable (schedule), and rolling stock. These topics

are themselves further divided into additional subschemas that address more specific

areas.

It is based on XML. XML is not an application language, but rather a set of rules that

can be used to define other “mark-up” language and therefore it acts as a meta lan-

guage. The major advantage of XML based documents is that they describe both data

as well as the data’s structure.

Therefore, XML is an ideal solution for transfer and storage of railroad data.

RailML is an open source data structure that has been developed to simplify the trans-

fer of data between various railroad simulation and operations computer programs.

1.8 SVG

Scalable Vector Graphics (SVG) is a standard from the W3C which is built on top of

XML. The SVG describes a language to draw graphics mainly on web pages.

The SVG recommendation comes from the W3C. The recommendation describes how

to create vector graphics using a mark-up language. Because SVG is based on XML,

tools that already know how to interpret XML will be able to interpret SVG. Having this

well-established standard as a foundation saves a lot of the work in defining the lan-

guage. It also means that there are numerous tools around which can check the struc-

ture of an SVG document or read it to pull out interesting information. Being built on

XML also makes it simpler to produce SVG programmatically from other XML data

sources using XSL and XSLT.

SVG graphics are vector graphics, so they can be resized without losing quality. A sin-

gle SVG file can be scaled to any size or transformed to any resolution without com-

promising the clarity of the graphic. Bitmap images such as PNG and GIF lose quality

any time they are resized.

Also, if you need to display the same graphic at multiple sizes or resolutions, you

would need multiple bitmap images, but only one SVG file. SVG files display clearly at

any size in any viewer or browser that supports SVG. Using browser controls, the user

can zoom in to view details in a complicated SVG graphic.

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 10 of 45

An SVG file might also be smaller in size than the same graphic created by a bitmap

(image) device such as GIF or PNG.

SVG files are ideal for producing any documents of any size to display on a computer

monitor, PDA, or cell phone, or documents to be printed or delivered as PDFs.

1.9 Converter schema railML to SVG

The railway line described in railML is converted and, if necessary, processed to obtain

many micro areas from a macro area.

Each area will be displayed by a Train Describer.

The conversion of the railML structure in the SVG format used by TDs is shown in Fig-

ure 2.

Figure 2 - RailML to svg conversion process

The process “Converter railML to SVGTD” in the Figure 2 can be divided into three

steps.

Step 1

In the first step, the railML elements (such as tracks, stations, signals, etc) are ana-

lysed and transformed into svg code (Figure 3).

The target is to get a set of files. Each file represents a micro areas as requested by

the infrastructure manager.

Figure 3 - RailML to svg conversion process - Step 1

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 11 of 45

This is not possible in automatic way; the operator must manually improve the

graphics and decide the division of areas.

Step 2

The operator can make the proper changes on files to make them more understanda-

ble (step 2).

A program, called SVGEditorASTS, allow the operator to manage the elements and as-

sociate them to the logic of animation.

The Figure 4 represents the step 2.

Figure 4 – RailML to svg conversion process – Step 2

In the second step, the operator:

 Elaborates the animation rules and the file Infrastructure.svg (the one that

contains all the line) to define n files, each of them is a TD (a part of the line

only).

An example of animation rule is represented in the table.

Type wayside point Id event Id animation state Graphic

Track Track_free 1

Track Track_occupation 2

Table 1 - Animation rule example

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 12 of 45

This information shall be determined by infrastructure manager. It decides the

logic of animation (colours, flashes) to be allocated to wayside points in cer-

tain conditions.

 Subsequently, SVGEditorASTS generates “n” TD.svg files adding the infor-

mation related to animation.

Step 3

In Figure 5 is represented the last step.

In this step “n” zip files are generated, one for each TD and one for the animation log-

ic; this last file is called “graphic library”.

These final TD files are all written in svg too, but now every element is linked to an

“ancestor” of the graphic library from which it inherits a specific animation/behaviour.

Figure 5 - RailML to svg conversion process – Step 3

Figure 6 shows the process of TD conversion.

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 13 of 45

Figure 6 - Conversion process

In Figure 7 is shown how the animation logic works for a track (TrackId1) after a

TDSectionOccupationEvent.

Figure 7 - Example of animation logic for TD

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 14 of 45

2 RAILML TO ASTS ENVIRONMENT CONVERTER

The ASTS data environment includes the following main elements:

 Wayside elements. They correspond to a physical railway device (signals,

tracks, switch points);

 Logical elements. They correspond to “non-physical” elements that are typically

an aggregation of physical elements (routes, platforms, block sections, train

tracking berths);

 Mimic panels data;

 Controls and indications;

 ARS data. They are used by Automatic Route Setting and Regulation functions

(platform priorities, preferred paths, alternative routes).

2.1 Wayside elements

These data can be obtained directly from the RailML stream. These elements are de-

scribed in terms of id, name and relationships with other objects.

2.2 Logical elements

These data can be obtained elaborating the graph of wayside elements built up during

the previous step. The elaboration process must rely on the following information.

 Infrastructure manager constraints

 Railway line constraints

 Tracks aggregation level

Due to the importance of this step, a further discussion must take place to identify all

the RailML elements in more details. Beyond any doubt, this discussion will lead to a

small refactoring of the RailML structure itself.

2.3 Mimic panels data

These data have already been described in paragraph 0 above.

2.4 Controls and indications

These data are not needed for this project.

Information about the state of wayside elements is provided by the simulator.

2.5 ARS data

These data are not needed for the Demonstrator.

The ARS and regulation logic is provided by WP4 and WP5.

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 15 of 45

3 GRAPHICAL INTERFACES

3.1 Train Graph

3.1.1 Protocols

This paragraph describes all data and events that shall be used by Train Graph.

3.1.1.1 GetInfrastructureData (DataProvider interface)

It provides the following information along with their geographical position:

 Tracks

 Lines

 Stations

 Signals

 Switch Points

As far as TG is concerned, only the distances between stations are important to draw

the graph.

3.1.1.2 GetInfrastructureUnavailability (DataProvider interface)

It provides all information needed to draw disruptions at start time. At run time the

disruption events shall be used.

3.1.1.3 GetTimetables (DataProvider interface)

It provides all information needed to draw the theoretical train tracks.

3.1.1.4 GetTrainDelayInfo (DataProvider interface)

It provides the delay for one or more trains. It shall be used to show the delay info for

every train.

3.1.1.5 GetTimetableDelayInfo (DataProvider interface)

It provides the delay timetable for every train. It shall be used to show the delay info

for every train.

3.1.1.6 GetRealTimeTrafficPlan (DataProvider interface) RTTP

It includes:

 Active lines

 Current Trains

 Timetables

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 16 of 45

It provides all information needed to draw all trains at start time. At run time the

TrainPositionChangeEvent shall be used. The RTTP might be used in a polling loop in

order to achieve the same behavior.

3.1.1.7 TrainPositionChangeEvent (Event)

It provides (asynchronously):

 Id of the train

 Position of the train head

 List of the occupied tracks

It shall be used to update TG train visualization. If the train is arriving/departing

to/from a station, the corresponding line will be thickened. This shall be possible cor-

relating train position with station position.

3.1.1.8 TrainSuppressedEvent (Event)

This event is fired when a train has been suppressed.

It provides:

 ID of the Train

 Time at which the train has been suppressed After the reception of this event,

the corresponding train shall be cancelled from the graph.

3.1.1.9 LineDisruptionEvent (Event)

This event is fired in case of line disruptions.

It provides:

 Id of the RailML Line representation

 Starting time of the disruption

 Time at which the disruption will end (for planned operations)

 Reason of the disruption

Disruption starting time and, possibly, ending time shall be used to calculate the width

of the box that will represent the disruption itself.

The geographical extension of the disruption (from the RailML ID) shall be used to de-

termine the height of the box.

3.1.1.10 TrackDisruptionEvent (Event)

This event is fired in case of track disruptions.

It provides:

 Id of the Track

 Starting time of the disruption

 Time at which the disruption will end (for planned operations)

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 17 of 45

 Reason of the disruption

Disruption starting time and, possibly, ending time shall be used to calculate the width

of the box that will represent the disruption itself.

The geographical extension of the disruption (from the RailML ID) shall be used to de-

termine the height of the box.

3.1.1.11 StationDisruptionEvent (Event)

This event is fired in case of station disruptions.

It provides:

 Id of the Station

 Starting time of the disruption

 Time at which the disruption will end (for planned operations)

 Reason of the disruption

Disruption starting time and, possibly, ending time shall be used to calculate the width

of the red line, along the station, that will represent the disruption itself.

3.1.1.12 TemporarySpeedRestrictionEvent (Event)

This event is fired in case of temporary speed restrictions.

It provides:

 List of IDs of the RailML representation of Tracks and/or Lines

 Speed restriction value

The geographical extension of the disruption (from the RailML ID list) shall be used to

determine the height of the speed restriction box.

3.1.1.13 ConnectionConflictEvent (Event)

This event is fired in case of connection conflicts.

It provides:

 Conflicting trains

 Conflict time

 Conflict location

A yellow target shall be placed at time/location coordinates on TG to indicate the pres-

ence of the conflict.

3.1.2 Interactions

TG can interact with the user in several ways. Basically, using this task, it is possible

to perform a subset of actions that HMI can perform. The most important difference is

that the object to manipulate can be chosen simply by selecting the objects itself from

the graphic and applying the correct action by choosing from a menu.

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 18 of 45

For instance, if the user wants to change the real time event for a train, using the HMI

he/she has to input somewhere the train number, using TG he/she has just to select

the train from the graphic and choose “change time” action from a menu.

A list of possible actions that can be initiated by TG follows.

 Change a train theoretical timetable

 Change real events time for a train (departure time, arrival time)

 Select a new path (this is possible only using the Path Selection HMI)

 Solve a conflict

 Get data about slowdowns and disruptions

 Get the list of trains that will cross a station

What actions are really necessary for OnTime is yet a matter of discussion.

3.2 Train Describer

3.2.1 Protocols

3.2.1.1 GetInfrastructureData (DataProvider interface)

It is the same interface used by TG. In this case all information (tracks, lines, stations,

signals, switch points) shall be used to draw the graph.

3.2.1.2 GetInfrastructureUnavailability (DataProvider interface)

It is the same interface used by TG.

It provides all information needed to draw disruptions at start time. At run time the

disruption events shall be used.

3.2.1.3 TrainPositionChangeEvent (Event)

This event is fired when a train changes its position.

It provides:

 ID of the train

 Position of the train head

 List of the occupied tracks

ID, position and tracks shall be used by TD to draw the train ID and to show in red all

the occupied tracks. Tracks ID shall be the same used in the RailML data stream.

3.2.1.4 TrainSuppressedEvent (Event)

It is the same event used by TG.

After the reception of this event, the corresponding train shall be cancelled from the

graph.

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 19 of 45

3.2.1.5 TrainEnterEvent (Event)

This event is fired when a train entered the scenario.

It provides:

 ID of the train

 Time at which the train entered

The train shall be drawn on a graph input point.

3.2.1.6 TrainExitEvent (Event)

This event is fired when a train left the scenario.

It provides:

 ID of the train

 Time at which the train left the scenario

The train shall be drawn on a graph output point.

3.2.1.7 LineDisruptionEvent (Event)

It is the same event used by TG.

The corresponding line on TD shall be marked as unavailable.

3.2.1.8 StationDisruptionEvent (Event)

It is the same event used by TG.

The corresponding station on TD shall be marked as unavailable.

3.2.1.9 PlatformDisruptionEvent (Event)

It is the same event used by TG.

The corresponding platform on TD shall be marked as unavailable.

3.2.1.10 TrackDisruptionEvent (Event)

It is the same event used by TG.

The corresponding track on TD shall be marked as unavailable.

3.2.1.11 SignalStateChangeEvent (Event)

This event is fired when a signal changes its state.

It provides:

 ID of the signal

 Signal aspect

The aspect of the corresponding signal on TD shall be changed accordingly.

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 20 of 45

3.2.1.12 TdSectionOccupationEvent (Event)

This event is fired when a section is occupied by a train.

It provides:

 ID of the section

 Train ID

 Time of occupation

It can be used in conjunction with TrainPositionChangeEvent to determine the which

track must be drawn in red (occupied).

3.2.1.13 TdSectionReleaseEvent (Event)

This event is fired when a section, previously occupied by a train, is now released.

It provides:

 ID of the section

 Train ID

 Time of release

It can be used to determine which track must be drawn in the status of released.

3.2.1.14 SetRouteEvent (Event)

This event is fired when a route is set for a train.

It provides:

 Route ID

It shall be used to draw in yellow a route set for a train.

3.2.1.15 UnsetRouteEvent (Event)

This event is fired when a route is unset for a train.

Up to now this event is not provided.

3.2.2 Interactions

Regarding TD interactions, the same considerations about TG (see 3.1.2) can be

made.

A list of possible actions that can be initiated by TD follows.

 Identify a train

 Cancel a train

 Substitute a train with a different one

 Switch two trains

 Select a new path (this is possible only using the Path Selection HMI)

 Set a route

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 21 of 45

What actions are really necessary for OnTime is yet a matter of discussion.

3.3 HMI

3.3.1 Protocols - Events

All events are implemented using the publish and subscribe paradigm and provide a

standard data structure that is the following:

 Event ID [String] (can be incremented automatically)

 Event name [String]

 Version ID [int]

 Type ID [String] (needed by communication infrastructure to manage events)

 Timestamp [String]

 XmlPayload [String] (general purpose area defined by a proper xsd file)

In the description of the following events this standard structure is not shown. The

“provides” section is related only to the structure defined inside the XmlPayload field.

3.3.1.1 UserRequestWPxEvent (Event)

This event is fired when the user needs to input data into the system. The subscriber

of this event is WPx. Demonstrator (WP8) is the publisher.

It provides by means of XmlPayload:

 ID of operation to execute into the previous tasks

 Parameters of the previous operation

Although every WP can receive every operation request, it is clear that only a WP is

responsible to answer the request itself.

Example. The “AddTrain” operation can be sent to WPa and WPb (UserRequest-

WPaEvent and UserRequestWPbEvent respectively) but only one of the two can man-

age the request.

Operations list will be provided in the next paragraph.

3.3.1.2 SystemRequestEvent (Event)

This event is fired when the system needs to send data to HMI. The subscriber of this

event is the demonstrator (WP8). Every WP can be the publisher.

It provides by means of XmlPayload:

 ID of the tasks that initiated the request

 Textual description of the operation

 ID of the operation to execute into HMI

 Parameters of the previous operation

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 22 of 45

Operations list will be provided in the next paragraph.

3.3.1.3 Operations

This paragraph shows the operations that can be performed by HMI and the related

parameters used in the operation context.

The complete operations list is presented in the following table.

Operation Direction Purpose Type

AddTrain HMI=>Sys To add a new train into the system Next

CancelTrain Not necessary because it is possible

to use the TrainSuppressed Event.

Next

ModifyTime HMI=>Sys To modify a real/theoretical depar-

ture/arrival time

Rttp

ModifyDelay HMI=>Sys To modify/add a train delay Next

ManageDisruption HMI=>Sys To add/modify/cancel a line/station

disruption

Next

ManageSlowdown HMI=>Sys To add/modify/cancel a line/station

slowdown

Next

ManageLink HMI=>Sys To add/modify/cancel a link between

two trains

Next

ManageConstraint HMI=>Sys To add/modify/cancel a constrain Next

SelectNewPath HMI=>Sys To select a new path for a train Next

SolveConflict HMI=>Sys To solve a train conflict (using the

possible solutions provided)

Next

UserResponse HMI=>Sys To use in response of an SystemRe-

quest

Yes

SystemRequest

Sys=>HMI To allow the user to answer a ques-

tion with “Yes” or “No”.

To allow the user to choose one or

more elements from a list.

To allow the user to answer a ques-

tion with a simple string.

(See UserResponse)

Yes

ShowData Sys=>HMI To display data in a widget inside an

HMI form

To show system outcomes

Yes

Table 1 - HMI operations

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 23 of 45

The meaning of the “type” column is the following:

1) Next. Although HMI might manage the operation, due to non-interactively na-

ture of the OnTime system, it has been chosen to use it in a future version.

2) Rttp. For now, Rttp module is the only in charge of dealing whit this data.

3) Yes. It is present in the actual version.

Because of the importance of cost functions in the OnTime project, the description of

the events related to them are described in a separate paragraph (3.3.2).

3.3.1.4 addTrain

Direction: from HMI to System

Purpose: to add a new train into the system

UserRequestWPxEvent XmlPayload:

 Operation ID: addTrain

 Parameters: trainID, departure station, departure time, arrival station, arrival

time

o Example: “4568,Boden,18:45,Lulea,19:30” (The new train 4568 will de-

part from Boden at 18:45 and will arrive in Lulea at 19:30)

3.3.1.5 cancelTrain

Not necessary because it is possible to use the TrainSuppressed Event.

3.3.1.6 modifyTime

Direction: from HMI to System

Purpose: To modify a real/theoretical departure/arrival time

UserRequestWPxEvent XmlPayload:

 Operation ID: modifyTime

 Parameters: trainID, station, event, new time

o Example: “4569,Boden, A, 18:50” (The train 4569 will arrive/arrived in

Boden at 18:50)

It the train is in the future the new time will substitute the previous predicted time, if

it is in the past it will substitute the previous real time.

3.3.1.7 modifyDelay

Direction: from HMI to System

Purpose: To modify/add a train delay

UserRequestWPxEvent XmlPayload:

 Operation ID: modifyDelay

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 24 of 45

 Parameters: trainID, station, event, delay in minutes

o Example: “4567,Boden,D,34” (Departure from Boden of train 4567 will

be delayed of 34 minutes)

3.3.1.8 manageDisruption

Direction: from HMI to System

Purpose: To add/modify/cancel a line/station disruption

UserRequestWPxEvent XmlPayload:

 Operation ID: manageDisruption

 Parameters: disruptionID, operation (A - add, M - modify, C - cancel), type (L –

line, S – station), direction (O – Odd, E - Even, B – Both), start datetime, end

datetime, start station, end station

o Example: “X, A, L, O, 11/12/2013 12:30, 13/12/2013 18:00, Lulea, Bo-

den” (To add [A] a new line [L] disruption [X means yet unknown ID]

from Lulea to Boden, odd [O] track, starting at 12:30 on 11/12/2013

and ending at 18:00 on 13/12/2013)

o Example: “D1234, C” (To cancel the disruption D1234)

o Example: “D1235, M, S, B, 14/12/2013 05:00, 16/12/2013 03:00, Bo-

den (To modify the station [S] disruption D1235 in Boden, both [B]

tracks, now starting at 05:00 on 14/12/2013 and ending at 03:00 on

16/12/2013)

3.3.1.9 manageSlowdown

Direction: from HMI to System

Purpose: To add/modify/cancel a line/station slowdown

UserRequestWPxEvent XmlPayload:

 OperationID: manageSlowdown

 Parameters: slowdownID, operation (A - add, M - modify, C - cancel), type (L –

line, S – station), direction (O – Odd, E - Even, B – Both), start datetime, end

datetime, start station, end station

o Example: “X, A, L, E, 11/12/2013 12:30, 13/12/2013 18:00, Lulea, Bo-

den” (To add [A] a new line [L] slowdown [X means yet unknown ID]

from Lulea to Boden, even [E] track, starting at 12:30 on 11/12/2013

and ending at 18:00 on 13/12/2013)

o Example: “S1234, C” (To cancel the slowdown S1234)

o Example: “S1235, M, S, O, 14/12/2013 05:00, 16/12/2013 03:00, Bo-

den (To modify the station [S] slowdown D1235 in Boden, odd [O]

track, now starting at 05:00 on 14/12/2013 and ending at 03:00 on

16/12/2013)

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 25 of 45

3.3.1.10 manageLink

Direction: from HMI to System

Purpose: To add/modify/cancel a link between two trains

UserRequestWPxEvent XmlPayload:

 Operation ID: manageLink

 Parameters: trainID1, trainID2, operation (A - add, M - modify, C - cancel),

station, min time, max time, link type (R – rolling stock, C – crew, N - connect)

o Example: 123, 456, A, Boden, 2, 5, R (to add rolling stock link between

train 123 and 456 in Boden, minimum wait time 2 minutes, maximum

wait time 5 minutes)

3.3.1.11 manageConstraint

Direction: from HMI to System

Purpose: To add/modify/cancel a constrain

UserRequestWPxEvent XmlPayload:

 Operation ID: manageConstraint

 Parameters: trainID,

3.3.1.12 selectNewPath

Direction: from HMI to System

Purpose: To select a new path for a train

UserRequestWPxEvent XmlPayload:

 Operation ID: selectNewPath

 Parameters: trainID, pathID

3.3.1.13 solveConflict

Direction: from HMI to System

Purpose: To solve a train conflict

UserRequestWPxEvent XmlPayload:

 OperationID: solveConflict

 Parameters: solutionID (one of the solutions got via PossibileConflictSolu-

tionsResponse)

3.3.1.14 userResponse

Direction: from HMI to System

Purpose: To use in response of an SystemRequest

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 26 of 45

UserRequestWPxEvent XmlPayload:

 OperationID: userResponse

 Parameters: requestID, answerString

o Example: R1234, Yes (answer to a Yes/No systemRequest)

o Example: R1234, item1:item2,item3 (answer to a choose element Sys-

temRequest)

o Example: R1234, user response (answer to a simple question Sys-

temRequest)

3.3.1.15 systemRequest

Direction: from System to HMI

Purpose: To allow the user to answer a question with “Yes” or “No”.

To allow the user to choose one or more elements from a list.

To allow the user to answer a question with a simple string.

SystemRequestEvent XmlPayload:

 Task ID: identifier of the task that performed the request

 Description: request description (showed to the user by HMI)

 OperationID: systemRequest

 Parameters: requestID, type, (YN - Yes/No, L – List, Q – Question), dataset

o Example: R1234, YN (to ask “Yes” or “No” to the question in descrip-

tion)

o Example: R1234, L, item1:item2:item3:item4 (to choose one item of

the list)

o Example: R1234, Q (the answer to the question in description will be a

free text)

3.3.1.16 showData

Direction: from System to HMI

Purpose: To display data in a widget inside an HMI form

To show system outcomes

SystemRequestEvent XmlPayload:

 Task ID: identifier of the task that performed the request

 Description: not required

 OperationID: showData

 Parameters: formID, widgetID, type (T – text, N – number, L – list

(text+number), [others can be added]), data

o Example: logForm, logWidget, T, “Current trains number: 56” (to show

the text [T] “Current trains number: 56” in the logWidget into the log-

Form)

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 27 of 45

Note. Type and data structures can be chosen properly to display every kind of data

using different visualization type.

3.3.2 Protocols - Cost Functions Parameters

A general formulation of an optimization algorithm focuses on an objective function

that must be minimized or maximized, subject to a set of constraints. The objective

function is likely to rely on some parameters (e.g., weights) which regulates the be-

havior of the algorithm and the structure of solutions.

Of course, this is the case with all the On-Time optimization modules. Hence, the sys-

tem must allow the user to change interactively those parameters, in order to force

algorithms to give more priority to some aspects before others.

According to the key-concepts of the WP7 architecture design, modules must be kept

decoupled, thus they can subscribe to events and start working without the architec-

ture being aware of their internal structure or configurations. Moreover, a hot-swap of

modules should be made possible by the architecture.

We have then that cost function parameters could change over time, both in values

and in structure. Moreover, the system should take into account that a crash of an op-

timization module could occur and, as soon as it restarts, the last configuration of cost

function parameters must be set again. This leads to the involvement of the WP7 Data

Provider module, which will persist those data for these needs.

The following activity diagram shows the dynamics of a computing module:

First of all, a module

must query the WP7 Data Provider in order to retrieve the last cost function parame-

ters stored at it. Two scenarios are possible:

 The architecture does not have any previously stored values, and send a “not

found” response. This happens at the first run of a module. In this case, the

module will retrieve its internal default configuration of cost function parame-

ters and will send back this configuration to the architecture.

Figure 8 - Cost Function Parameters Set and Retrieve

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 28 of 45

 After a crash-and-restart, or a hot-swap of a module, the architecture main-

tains a copy of the last cost function configuration, and send it to the module.

In case of a restart of a module, this configuration is likely to have the correct

structure and values, but if the module has been replaced, probably it is not.

The module must then execute a check procedure, in order to ensure that what

it received is correct. If it is not, the module will act like a first-run, as de-

scribed above. Otherwise, the module starts working directly, without sending

back its actual cost function configuration.

A new configuration of cost function parameters is issued by a CFParametersChange

event (3.3.2.1), to which the WP7 architecture is subscribed. Upon the receipt of such

event, the received configuration is stored in the database and a CFParametersCon-

figAvailable event (3.3.2.3) is issued and received by all subscribed modules, that are

thus notified of a new configuration available at the WP7 Data Provider. The following

picture summarizes this scenario.

3.3.2.1 Changing parameters through HMI

The parameters can be changed at any moment during the system execution by HMI’s

Interface.

Figure 9 - Events Scenario

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 29 of 45

First of all the HMI must query the WP7 Data Provider in order to retrieve the last cost

function parameters stored at it. This query must be done for every WP the HMI wants

to manage.

For each WP two scenarios are possible:

 The architecture does not have any previously stored values, and send a “not

found” response. This happens if the module had never run before. In this case

the HMI interface for managing parameters for that specific WP will not be ena-

bled.

 The architecture has a set of parameters for that specific WP and gives them to

HMI in the response. On the base of the response the HMI creates the interface

to manage the parameters for the specific WP (Fel! Hittar inte refer-

enskälla.).

Once retrieved the parameters for a WP, using the HMI interface, a user can change

the parameters’ value. After confirming the change the HMI fires a CFParameter-

sChange event (3.3.2.1).

The events, requests and responses involved in this process are described in detail in

the next four paragraphs.

3.3.2.2 CFParametersChangeEvent

Direction: from HMI/OPT to System

Purpose: To set one or more tuples

CFParametersChangeEvent XmlPayload:

 OwnerWP

 Parameters - List of tuples:

o DataType

o Key

o Value

3.3.2.3 CFParametersConfigAvailableEvent

Direction: from WP7 to System

Purpose: To confirm that all tuples have been correctly stored to the DB.

CFParametersConfigAvailableEvent XmlPayload:

 OwnerWP

3.3.2.4 GetLastParametersRequest

Direction: from HMI/OPT to DataProvider

Purpose: To request the list of cost function parameters

GetLastParametersRequest XmlPayload:

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 30 of 45

 OwnerWP (the WP who makes the request)

3.3.2.5 ParametersResponse

Direction: from DataProvider to System

Purpose: To send the list of cost function parameters

ParametersResponse XmlPayload:

 OwnerWP (the WP who makes the request)

 Parameters - List of tuples:

o DataType

o Key

o Value

3.3.3 Protocols – Data Provider

The OnTime data source is the so called Data Provider and, in this case, it is not used

the standard events publish/subscribe mechanism.

All data requests/responses are synchronous and don’t provide a standard data struc-

ture. It depends on the nature of the request/response. When required, the related

payload is referred as DataRequestPayload and DataResponsePayload.

The complete data requests/responses list is presented in the following table.

Data request/response Direction Purpose Type

DisruptionsListRequest HMI=>Sys To request the disruptions list to

the system (see DisruptionsLis-

tResponse)

Yes

SlowdownsListRequest HMI=>Sys To request the slowdowns list to

the system (see SlowdownsLis-

tResponse)

Yes

LinksListRequest HMI=>Sys To request the slowdowns list to

the system (see LinksLis-

tResponse)

Yes

ConstraintsListRequest HMI=>Sys To request the slowdowns list to

the system (see ConstraintsLis-

tResponse)

Yes

PossibleTrainPathsRequest HMI=>Sys To request a list of possible train

path (see PossibleTrainPathsRe-

sponse)

Next

PossibileConflictSolu-

tionsRequest

HMI=>Sys To request a list of possible con-

flict solutions (see PossibileCon-

flictSolutionsResponse)

Next

DisruptionsListResponse Sys=>HMI To send the list of disruptions

(see DisruptionsListRequest)

Yes

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 31 of 45

SlowdownsListResponse Sys=>HMI To send the list of slowdowns (see

SlowdownsListRequest)

Yes

LinksListResponse Sys=>HMI To send the list of links (see

LinksListRequest)

Yes

ConstraintsListResponse Sys=>HMI To send the list of constraints

(see ConstraintsListRequest)

Yes

PossibleTrainPathsResponse Sys=>HMI To send a list a possible paths for

a train (see PossibleTrain-

PathsRequest)

Next

PossibileConflictSolu-

tionsResponse
Sys=>HMI To send a list of possible conflict

solutions (see PossibileConflictSo-

lutionsRequest)

Next

Table 2 - HMI data requests/responses list

The meaning of the “type” column is the same of the previous table.

Because of the importance of cost functions in the OnTime project, the description of

the requests/responses related to them are described in a separate paragraph (3.3.2).

3.3.3.1 disruptionsListRequest

Direction: from HMI to DataProvider

Purpose: To request the disruptions list to the system

DataRequestPayload:

 Parameters: none

3.3.3.2 slowdownsListRequest

Direction: from HMI to DataProvider

Purpose: To request the slowdowns list to the system

DataRequestPayload:

 Parameters: none

3.3.3.3 linksListRequest

Direction: from HMI to DataProvider

Purpose: To request the links list to the system

DataRequestPayload:

 Parameters: none

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 32 of 45

3.3.3.4 constraintsListRequest

Direction: from HMI to DataProvider

Purpose: To request the constraints list to the system

DataRequestPayload:

 Parameters: none

3.3.3.5 possibleTrainPathsRequest

Direction: from HMI to DataProvider

Purpose: To request a list of possible train path

DataRequestPayload:

 OperationID: possibleTrainPathsRequest

 Parameters: none

3.3.3.6 possibileConflictSolutionsRequest

Direction: from HMI to DataProvider

Purpose: To request a list of possible conflict solutions

DataRequestPayload:

 OperationID: possibleConflictSolutionsRequest

 Parameters: none

3.3.3.7 disruptionsListResponse

Direction: from DataProvider to HMI

Purpose: To send the list of disruptions

DataResponsePayload:

 Task ID: identifier of the task that performed the request

 Parameters: disruptions list

3.3.3.8 slowdownsListResponse

Direction: from DataProvider to HMI

Purpose: To send the list of slowdowns

DataResponsePayload:

 Task ID: identifier of the task that performed the request

 Parameters: slowdowns list

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 33 of 45

3.3.3.9 linksListResponse

Direction: from DataProvider to HMI

Purpose: To send the list of links

DataResponsePayload:

 Task ID: identifier of the task that performed the request

 Parameters: slowdowns list

3.3.3.10 constraintsListResponse

Direction: from DataProvider to HMI

Purpose: To send the list of constraints

DataResponsePayload:

 Task ID: identifier of the task that performed the request

 Parameters: constraints list

3.3.3.11 possibleTrainPathsResponse

Direction: from DataProvider to HMI

Purpose: To send a list a possible paths for a train

DataResponsePayload:

 Task ID: identifier of the task that performed the request

 Description: not required

 OperationID: disruptionListResponse

 Parameters: possible train paths list

3.3.3.12 possibileConflictSolutionsResponse

Direction: from DataProvider to HMI

Purpose: To send a list of possible conflict solutions

DataResponsePayload:

 Task ID: identifier of the task that performed the request

 Description: not required

 OperationID: disruptionListResponse

 Parameters: possible conflict solutions list

3.3.4 HMI forms description and interactions

This paragraph will describe all the HMI forms and their user interactions. Where pos-

sible, a draft form layout will be shown.

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 34 of 45

3.3.4.1 Question forms

These forms will be used to answer a system request (see 3.3.1.15 and 3.3.1.14).

Type “YN”

System Request payload example:

 Description: “Do you want to proceed anyway?”

 OperationID: systemRequest

 Parameters: [unique requestID], YN

Users response will be “Yes” or “No”.

Figure 10 - System request - Type YN

Possible usage. A WP changes its own configuration and the whole system needs to be

restarted. It can fire a SystemRequest of this type to ask the user if he/she agrees.

Type “Q”

System Request payload example:

 Description: “Input your code”

 OperationID: systemRequest

 Parameters: [unique requestID], Q

User response will be what typed in the text box.

Figure 11 - System Request - Type Q

Possible usage. A WP needs a new parameter value at run time (for instance a cost

function parameter). It can fire a SystemRequest of this type to ask user the new val-

ue.

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 35 of 45

Type “L”

System Request payload example:

 Description: “Choose one or more trains from the list”

 OperationID: systemRequest

 Parameters: [unique requestID], L

User response will be one or more items in the list.

Figure 12 - System Request - Type L

Possible usage. A WP needs a subset of trains chosen from a bigger set. It can send

the full set with a SystemRequest of this type and receive the required subset after

the user choice.

3.3.4.2 Main window

The main window of the demonstrator is made up of the following part:

1) A menu bar with the following items:

a. Exit

b. System Boot (to enter the system boot parameters)

c. Cost Function (to enter the cost function parameters)

d. System Outcomes (to show the system outcomes)

If it is necessary, a WP related menu item can be added to show forms specific

to one or more work packages.

2) A system log text area. It can be accessed using the showData event (for-

mID=mainForm, widgetID=logWidget, type=T, data=<custom data>. See

3.3.1.16)

3) A system control area. It is made up of:

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 36 of 45

a. Start system button. It starts all the tasks in the system using the cur-

rent boot configuration. If the system is already started, the button is

disable.

b. Stop system button. It kills all the task in the system using the current

boot configuration. If the system is already stopped, the button is disa-

bled (ShutdownSystem event).

c. Boot configuration. It shows the current boot configuration.

4) A simulator control panel. It shall allow to:

a. Start simulator (StartSystemClock event)

b. Stop simulator (StopSystemClock event)

c. Pause simulator (PauseSystemClock event)

d. Speed up simulator (SpeedUpSystemClock event)

e. Speed down simulator (SpeedDownSystemClock event)

5) Scenario selection. Choosing a new scenario will stop and restart the system.

6) Simulator speed control (for fine tuning and speed indication)

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 37 of 45

Figure 13 - Main demonstrator window

Shape and dimensions of this window will be adapted to the workstation monitors size

and position.

3.3.4.3 System boot form

The purpose of this form is to provide a list of tasks and their related parameters to

start the system. Every tasks/parameters configuration can be saved in an xml file.

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 38 of 45

Figure 14 - System boot form

In the previous figure, it is possible to see how this window looks like.

The user can define all the system tasks, the order in which they must be launched

and the parameters they need to start.

From top to bottom and from left to right, it is possible to identify several different ar-

eas.

1) Menu. The “File” item has the following sub-items:

a. Open… - To open a previously saved configuration.

b. Save – To save the current configuration whit the same name.

c. Save as … - To save the current configuration with a new name.

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 39 of 45

d. Clone – To duplicate (copy) the current configuration in a new one.

e. Close – To close the window.

2) Configuration name. In the example the name is “Configuration 1”. The star

sign (*) means that the current configuration has changed and not yet saved.

3) Task tabs. In the example, there are two tasks already configured (Task1 and

Task2). The tab with the plus sign (+) shall be used to add a new task into the

configuration.

4) Change position and cancel buttons. To change the task position (the launching

order) or cancel the task itself. Task tabs shall change accordingly.

5) TaskID. To input the ID of the task. These ID shall be used to identify tasks

when required by the previously described events.

6) Command. The command used to launch the task. The user can find the right

path using the “Browse…” button.

7) Stop Cmd. The command used to stop the task (if it exists, otherwise a stand-

ard “kill” procedure shall be performed). The user can find the right path using

the “Browse …” button.

8) Sleep before. How many seconds HMI will wait before launching the task.

9) Sleep after. How many seconds HMI will wait after launching the task.

10) Add parameter (+ button). To add a new launch parameter.

11) Name. The name of the new parameter.

12) Value. The value of the new parameter.

13) Parameters list. An ordered list of the parameters used to launch the task. The

user can:

a. Change the parameter order using the up and down buttons.

b. Cancel the parameter using the “minus” (-) button.

The task in the previous example will be launched using the following command:

C:\Users\NewUser\onTimeTask.exe –dm 23 –trains 1000 –routes 500 –database sce-

nario1_B

3.3.4.4 Cost function parameters form

The purpose of this form is providing new parameters values (weights) for the cost

functions (see” D1.2 - A framework for developing an objective function for evaluating

work package solutions” about cost functions). Every WP cost function parameter can

be get using the GetLastParameters message (3.3.2.4) from DataProvider, changed by

the user and sent back to the WP using the CFParametersChangeEvent event

(3.3.2.1). See 3.3.2 (cost function parameter protocol) for more details.

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 40 of 45

Figure 15 - Cost function parameters form

In the previous figure, it is possible to see how this window looks like.

The user can define the values of all the cost function parameters divided by work

package. Parameters order is not important in this case.

From top to bottom and from left to right, it is possible to identify several different ar-

eas.

1) “Exit” menu item. To close the window.

2) “Get” menu item. To get from DataProvider the current cost function parame-

ters list using the GetLastParameters message. This operation is done for the

currently selected work package (see point 4).

3) “Send” menu item. To send the current cost function parameters list using the

CFParametersChangeEvent. This operation is done for the currently selected

work package (see point 4).

4) WP selector. In the example picture it is supposed that WP4, WP5 and WPx on-

ly need to deal with cost function parameters. Changing the selected WP (say

from WPa to WPb), the demonstrator shall:

a. Send a GetLastParameters for WPb, if WPa cost function parameters ha-

ven’t changed.

b. Ask the user a confirmation, if WPa cost function parameters have

changed.

i. If the user continues, all WPa changes will be lost.

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 41 of 45

ii. If the user doesn’t continue, nothing happens and the user can

use the “send” menu item to save the current changes before

switching WP.

5) Parameters list. Type, name and value of parameters are shown in the list. The

user can change any parameter value just rewriting it.

The cost function parameters (weights) used in the example are taken from the above

mentioned D1.2 document.

3.3.4.5 System Outcomes

System outcomes can differ in terms of types and visualization.

Three primitive data types have been defined in 3.3.1.16 (showData): Text (T), Num-

ber (N), List (L [Text+Number]). Others and more structured types can be added to

fulfill all system requests.

The visualization is another issue to face. The same number, for instance, can be rep-

resented inside a textbox, a spinner or using a progress bar or a pie diagram.

For the sake of generality and not knowing exactly the boundaries of the system, in

this paragraph is proposed a solution that can deal with the most of situations.

Case 1 – Text

A text can be displayed in:

1) a label;

2) a text box;

3) a text area;

4) a banner.

The visualization depends on the widget which the text is displayed in.

Considering only the “parameters part” of the showData operation described in

3.3.1.16, a task can send the following data to HMI to get the output depicted in the

previous figure.

System is running

Figure 16 - Displaying a text

System is running System is down

System is starting

System is running

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 42 of 45

 textFormID, widgetLabel, T, “System is running”

 textFormID, widgetTextBox, T, “System is running”

 textFormID, widgetTextArea, T, “System is running”

 textFormID, widgetBanner, T, “System is running”

where textFormID is the ID of the previous form; widgetLabel, widgetTextBox,

widgetTextArea, widgetBanner are the names of the widgets from top to bottom and

left to right.

Note that in the widgetTextBox the text is added to the previous one. A maximum

number of rows can be defined.

Case 2 – Number

A number can be displayed in:

1) a label;

2) a spinner;

3) a progress bar (if >=0 and <=1);

4) a pie diagram (if >=0 and <=1);

5) … and more …

A task can send to HMI the following data to get the output depicted in the previous

figure.

 numberFormID, widgetLabel, N, 1234

 numberFormID, widgetSpinner, N, 43

 numberFormID, widgetProgressBar, N, 0.93

 numberFormID, widgetPieDiagram, N, 0.67

where numberFormID is the ID of the previous form; widgetLabel, widgetSpinner,

widgetProgressBar, widgetPieDiagram are the names of the widgets from top to bot-

tom and left to right.

1234

Figure 17 - Displaying a number

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 43 of 45

Case 3 – List

A list can be displayed in:

1) columns;

2) 3DLines;

3) 3DPie;

4) cylinders;

5) … and more …

A task can send to HMI the following data to get the output depicted in the previous

figure.

 listFormID, widgetColumn, L, 1234=10:1235=15:1236=5:1237=20

 listFormID, widget3DLine, L, 1234=10:1235=15:1236=5:1237=20

 listFormID, widget3DPie, L, 1234=10:1235=15:1236=5:1237=20

 listFormID, widgetCylinder, L, 1234=10:1235=15:1236=5:1237=20

Figure 18 - Displaying a list

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 44 of 45

where listFormID is the ID of the previous form; widgetColumn, widget3DLine, widg-

et3DPie, widgetCylinder are the names of the widgets from top to bottom and left to

right.

3.3.4.6 WP related forms

If needed, one or more WP specific forms can be added to HMI. Shape and contents of

these forms must be agreed between WPs leaders and WP8 leader.

3.3.4.7 Conclusions

HMI is a fully configurable and general purpose graphical interface. Its architecture al-

lows, however, to integrate more specific objects to deal with specific needs. The

communication protocol, as well, is open enough to add easily new functions and op-

erations.

WP8 user requirements and system

specifications

Document code: ONT-WP08-D-ANS-005-02 Page 45 of 45

4 REFERENCES

1) Clive Roberts, Lei Chen, Menglei Lu, Linsha Dai, Chris Bouch, Gemma Nichol-

son, Felix Schmid, D1.2 A framework for developing an objective function for

evaluating work package solutions (Cost function), 2012 Birmingham
2) Matteo Anelli, Bruno Ambrogio, Daniele Carcasole, Thomas Albrecht, John

Easton, D7.2 Architecture specification and integration requirements, 2012

Rome

